期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种抗混淆的大规模Android应用相似性检测方法 被引量:9
1
作者 焦四辈 应凌云 +3 位作者 杨轶 程瑶 苏璞睿 冯登国 《计算机研究与发展》 EI CSCD 北大核心 2014年第7期1446-1457,共12页
随着代码混淆、加壳技术的应用,基于行为特征的Android应用相似性检测受到的影响愈加明显.提出了一种抗混淆的大规模Android应用相似性检测方法,通过提取应用内特定文件的内容特征计算应用相似性,该方法不受代码混淆的影响,且能有效抵... 随着代码混淆、加壳技术的应用,基于行为特征的Android应用相似性检测受到的影响愈加明显.提出了一种抗混淆的大规模Android应用相似性检测方法,通过提取应用内特定文件的内容特征计算应用相似性,该方法不受代码混淆的影响,且能有效抵抗文件混淆带来的干扰.对5.9万个应用内的文件类型进行统计,选取具有普遍性、代表性和可度量性的图片文件、音频文件和布局文件作为特征文件.针对3种特征文件的特点,提出了不同内容特征提取方法和相似度计算方法,并通过学习对其相似度赋予权重,进一步提高应用相似性检测的准确性.使用正版应用和已知恶意应用作为标准,对5.9万个应用进行相似性检测实验,结果显示基于文件内容的相似性检测可以准确识别重打包应用和含有已知恶意代码的应用,并且在效率和准确性上均优于现有方案. 展开更多
关键词 文件内容特征 模糊散列 感知特征 安卓 应用相似性 抗混淆
下载PDF
Video Concept Detection Based on Multiple Features and Classifiers Fusion 被引量:1
2
作者 Dong Yuan Zhang Jiwei +2 位作者 Zhao Nan Chang Xiaofu Liu Wei 《China Communications》 SCIE CSCD 2012年第8期105-121,共17页
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ... The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts. 展开更多
关键词 concept detection visual feature extraction kemel-based learning classifier fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部