该文针对不规则干扰导致文字图片字符识别率下降的问题,提出一种基于U型网络框架和部分卷积运算的文字图片修复模型.首先,针对常见字体的干扰问题,通过图像融合建立干扰文字图像数据库,在逐像素损失、感知损失和全变分损失的共同约束下...该文针对不规则干扰导致文字图片字符识别率下降的问题,提出一种基于U型网络框架和部分卷积运算的文字图片修复模型.首先,针对常见字体的干扰问题,通过图像融合建立干扰文字图像数据库,在逐像素损失、感知损失和全变分损失的共同约束下,根据已有笔画细节对污损部分进行修复,并对污损汉字的字体形状和笔画走向的细部特征进行复原;其次,使用光学字符识别接口对修复前后图片进行测试并计算识别率;最后,将该文算法初步应用于真实场景下的古代文字拓片修复.实验证明,该文模型在常见文字修复上峰值信噪比最高达到32.58 d B,最佳损失值为0.015,污损文字图片修复后识别准确率提升30.49%.展开更多
文摘该文针对不规则干扰导致文字图片字符识别率下降的问题,提出一种基于U型网络框架和部分卷积运算的文字图片修复模型.首先,针对常见字体的干扰问题,通过图像融合建立干扰文字图像数据库,在逐像素损失、感知损失和全变分损失的共同约束下,根据已有笔画细节对污损部分进行修复,并对污损汉字的字体形状和笔画走向的细部特征进行复原;其次,使用光学字符识别接口对修复前后图片进行测试并计算识别率;最后,将该文算法初步应用于真实场景下的古代文字拓片修复.实验证明,该文模型在常见文字修复上峰值信噪比最高达到32.58 d B,最佳损失值为0.015,污损文字图片修复后识别准确率提升30.49%.