期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
加盐随机乱序建造密钥加密组保护数据的研究 被引量:3
1
作者 李京倍 《漳州职业技术学院学报》 2011年第2期30-34,52,共6页
阐述了加盐密钥加密现状和随机乱序建造密钥的作用以及流程方法。探讨加密、解密流程设计以确保数据安全的设想,探索一种加盐随机乱序建造密钥加密数据,并结合文字置换应对穷举密钥攻击,设计并构建应用于java的加密软件,以应对不断提高... 阐述了加盐密钥加密现状和随机乱序建造密钥的作用以及流程方法。探讨加密、解密流程设计以确保数据安全的设想,探索一种加盐随机乱序建造密钥加密数据,并结合文字置换应对穷举密钥攻击,设计并构建应用于java的加密软件,以应对不断提高的个人商业信息隐私要求,保证重要文件信息不被泄露。 展开更多
关键词 数据保护 密钥加密组 文字置换 加盐随机乱序
下载PDF
Single-trial EEG-based emotion recognition using temporally regularized common spatial pattern
2
作者 成敏敏 陆祖宏 王海贤 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期55-60,共6页
This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used a... This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified. 展开更多
关键词 emotion recognition temporal regularization common spatial patterns(CSP) two-character Chinese words permutation test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部