期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于文本潜在特性分类方法研究与仿真
1
作者 巫桂梅 《科技通报》 北大核心 2012年第7期148-151,共4页
研究文本快速准确分类的问题。同一词语在不同的语言环境下或者由不同的人使用可能代表不同的含义,这些词语在文本分类中的描述特征却极为相似。传统的文本分类方法是将文本表示成向量空间模型,向量空间模型只是从词语的出现频率角度构... 研究文本快速准确分类的问题。同一词语在不同的语言环境下或者由不同的人使用可能代表不同的含义,这些词语在文本分类中的描述特征却极为相似。传统的文本分类方法是将文本表示成向量空间模型,向量空间模型只是从词语的出现频率角度构造,当文中出现一些多义词和同义词时就会出现分类延时明显准确性不高等特点。为此提出一种基于语义索引的文本主题匹配方法。将文本进行关键词的抽取后构造文档-词语矩阵,SVD分解后通过优化平衡的方法进行矩阵降维与相似度的计算,克服传统方法的弊端。实践证明,这种方法能大幅度降低同义词与多义词对文本分类时的影响,使文本按主题匹配分类时准确高效,实验效果明显提高。 展开更多
关键词 文本主题匹配 平衡优化 潜在语义索引
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部