Web文档聚类可以有效地压缩搜索空间,加快检索速度,提高查询精度.提出了一种Web文档的聚类算法.该算法首先采用向量空间模型VSM(vector space model)表示主题,根据主题表示文档;再以文档为事务,以主题为事务项,将文档和主题间的关系看...Web文档聚类可以有效地压缩搜索空间,加快检索速度,提高查询精度.提出了一种Web文档的聚类算法.该算法首先采用向量空间模型VSM(vector space model)表示主题,根据主题表示文档;再以文档为事务,以主题为事务项,将文档和主题间的关系看作事务的形式,采用关联规则挖掘算法发现主题频集,相应的文档集即为初步文档类;然后依据类间距离和类内连接强度阈值合并、拆分类,最终实现文档聚类.实验结果表明,该算法是有效的,能处理文档类间固有的重叠情况,具有一定的实用价值.展开更多
文档聚类随着网上文本数量的激增以及实际应用中的需求,引起了人们广泛的关注。针对目前文档聚类的主要缺陷,提出了一种新的基于本体的抽象度可调文档聚类(Adjustable Text Clustering using Abstract Degreeof Concept,ATCADC)。该方...文档聚类随着网上文本数量的激增以及实际应用中的需求,引起了人们广泛的关注。针对目前文档聚类的主要缺陷,提出了一种新的基于本体的抽象度可调文档聚类(Adjustable Text Clustering using Abstract Degreeof Concept,ATCADC)。该方法采用Wordnet对VSM特征词进行概念映射和消歧处理,利用生成的特征概念实现文档语义层面上的矢量描述,并在二次特征选择的基础上,完成合成聚类(AHC)。方法能够依据用户设定的概念抽象度,借助专门设计的语义中心矢量调节聚类,还可利用关键特征概念对聚类簇进行解释。实验结果证明,聚类精度高,聚类簇可解释,调节效果有效,能够满足用户不同概念抽象度层次上的聚类。展开更多
文摘Web文档聚类可以有效地压缩搜索空间,加快检索速度,提高查询精度.提出了一种Web文档的聚类算法.该算法首先采用向量空间模型VSM(vector space model)表示主题,根据主题表示文档;再以文档为事务,以主题为事务项,将文档和主题间的关系看作事务的形式,采用关联规则挖掘算法发现主题频集,相应的文档集即为初步文档类;然后依据类间距离和类内连接强度阈值合并、拆分类,最终实现文档聚类.实验结果表明,该算法是有效的,能处理文档类间固有的重叠情况,具有一定的实用价值.
文摘文档聚类随着网上文本数量的激增以及实际应用中的需求,引起了人们广泛的关注。针对目前文档聚类的主要缺陷,提出了一种新的基于本体的抽象度可调文档聚类(Adjustable Text Clustering using Abstract Degreeof Concept,ATCADC)。该方法采用Wordnet对VSM特征词进行概念映射和消歧处理,利用生成的特征概念实现文档语义层面上的矢量描述,并在二次特征选择的基础上,完成合成聚类(AHC)。方法能够依据用户设定的概念抽象度,借助专门设计的语义中心矢量调节聚类,还可利用关键特征概念对聚类簇进行解释。实验结果证明,聚类精度高,聚类簇可解释,调节效果有效,能够满足用户不同概念抽象度层次上的聚类。