Ground movements due to longwall mining operations have the potential to damage the hydrological balance within as well as outside the mine permit area in the form of increased surface ponding and changes to hydrogeol...Ground movements due to longwall mining operations have the potential to damage the hydrological balance within as well as outside the mine permit area in the form of increased surface ponding and changes to hydrogeological properties. Recently, the Office of Surface Mining, Reclamation and Enforcement(OSMRE) in the USA, has completed a public comment period on a newly proposed rule for the protection of streams and groundwater from adverse impacts of surface and underground mining operations(80 FR 44435). With increased community and regulatory focus on mining operations and their potential to adversely affect streams and groundwater, now there is a greater need for better prediction of the possible effects mining has on both surface and subsurface bodies of water. With mining induced stress and strain within the overburden correlated to changes in the hydrogeological properties of rock and soil, this paper investigates the evaluation of the hydrogeological system within the vicinity of an underground mining operation based on strain values calculated through a surface deformation prediction model. Through accurate modeling of the pre- and post-mining hydrogeological system, industry personnel can better depict mining induced effects on surface and subsurface bodies of water aiding in the optimization of underground extraction sequences while maintaining the integrity of water resources.展开更多
This paper presents findings from studies carried out on the Queen Ede gully erosion site in Benin City, in the south-southern zone of Nigeria. The studies involved detailed topographical, geotechnical, meteorological...This paper presents findings from studies carried out on the Queen Ede gully erosion site in Benin City, in the south-southern zone of Nigeria. The studies involved detailed topographical, geotechnical, meteorological and hydrological data acquisition. The data were processed and analyzed to determine catchment size, gully morphology, soil characteristics, rainfall pattern and hydrological pattern. These were then interpreted and used to determine the method of control to be adopted. The adopted control measures is a combination of structural and non-structural methods. The structural method involved the use of gully control structures to divert the runoff entering the gully from the head, while the non-structural method involved the use of boulders and vegetation to stabilize the gully walls around the head region.展开更多
基金sponsored by the Appalachian Research Initiative for Environmental Science(ARIES)
文摘Ground movements due to longwall mining operations have the potential to damage the hydrological balance within as well as outside the mine permit area in the form of increased surface ponding and changes to hydrogeological properties. Recently, the Office of Surface Mining, Reclamation and Enforcement(OSMRE) in the USA, has completed a public comment period on a newly proposed rule for the protection of streams and groundwater from adverse impacts of surface and underground mining operations(80 FR 44435). With increased community and regulatory focus on mining operations and their potential to adversely affect streams and groundwater, now there is a greater need for better prediction of the possible effects mining has on both surface and subsurface bodies of water. With mining induced stress and strain within the overburden correlated to changes in the hydrogeological properties of rock and soil, this paper investigates the evaluation of the hydrogeological system within the vicinity of an underground mining operation based on strain values calculated through a surface deformation prediction model. Through accurate modeling of the pre- and post-mining hydrogeological system, industry personnel can better depict mining induced effects on surface and subsurface bodies of water aiding in the optimization of underground extraction sequences while maintaining the integrity of water resources.
文摘This paper presents findings from studies carried out on the Queen Ede gully erosion site in Benin City, in the south-southern zone of Nigeria. The studies involved detailed topographical, geotechnical, meteorological and hydrological data acquisition. The data were processed and analyzed to determine catchment size, gully morphology, soil characteristics, rainfall pattern and hydrological pattern. These were then interpreted and used to determine the method of control to be adopted. The adopted control measures is a combination of structural and non-structural methods. The structural method involved the use of gully control structures to divert the runoff entering the gully from the head, while the non-structural method involved the use of boulders and vegetation to stabilize the gully walls around the head region.