Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profi...Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.展开更多
The main purpose of this paper is to investigate energy bounds in the context of f(R, G) gravity. To meet this aim, we choose static spherically symmetric spacetime in f(R, G) gravity to develop the field equations. W...The main purpose of this paper is to investigate energy bounds in the context of f(R, G) gravity. To meet this aim, we choose static spherically symmetric spacetime in f(R, G) gravity to develop the field equations. We select three different models of f(R, G) gravity, which are thoroughly discussed in the literature. Firstly, the inequalities are formulated using energy bounds and then viability of the considered models are checked respectively. Graphical analysis show that specific f(R, G) gravity models are satisfied under suitable values of model parameters. It is shown that in a certain case energy bounds are satisfied expect SEC, which supports the late time acceleration expansion of unverse.展开更多
基金Projects(60904101,60972164) supported by the National Natural Science Foundation of ChinaProject(N090404009) supported by the Fundamental Research Funds for the Central UniversitiesProject(20090461187) supported by China Postdoctoral Science Foundation
文摘Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.
文摘The main purpose of this paper is to investigate energy bounds in the context of f(R, G) gravity. To meet this aim, we choose static spherically symmetric spacetime in f(R, G) gravity to develop the field equations. We select three different models of f(R, G) gravity, which are thoroughly discussed in the literature. Firstly, the inequalities are formulated using energy bounds and then viability of the considered models are checked respectively. Graphical analysis show that specific f(R, G) gravity models are satisfied under suitable values of model parameters. It is shown that in a certain case energy bounds are satisfied expect SEC, which supports the late time acceleration expansion of unverse.