Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of ...Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.展开更多
January 10th-12th marked the opening of The13th(Hangzhou)Tanboocel Union Conference themed on"Green,Innovation,Intelligent and Win-win".Directed by China National Textile and Apparel Council(CNTAC)and sponsored ...January 10th-12th marked the opening of The13th(Hangzhou)Tanboocel Union Conference themed on"Green,Innovation,Intelligent and Win-win".Directed by China National Textile and Apparel Council(CNTAC)and sponsored by China Tanboocel Union,展开更多
Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical a...Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical applications. In this review, a "non-classical crystallization" mechanism is discussed for their possibilities in morphology control of hierarchically-structured materials. Differently, this crystallization route is not based on the attaching and detaching of monomers as happened in the classical case, but through the self-organization of preformed building blocks as nanosized subunits, whose oriented attachment leads to mesocrystals with favorable morphology and texture. Representative materials including both inorganic and organic crystals are reported with possible mechanisms proposed. Synthetic protocols based on this mechanism provide unique inspirations for materials design and could be applied to morphological and structural control of new materials with optimized functions.展开更多
In the past two decades,dynamic covalent chemistry has been greatly developed,which is mainly reflected in two aspects:1.new dynamic covalent bonds(DCBs)are continuously discovered;2.various DCBs have been introduced ...In the past two decades,dynamic covalent chemistry has been greatly developed,which is mainly reflected in two aspects:1.new dynamic covalent bonds(DCBs)are continuously discovered;2.various DCBs have been introduced into polymer materials for different functions.These functional polymer materials have brought new opportunities for sustainable development.In this review,we provide an overview of various functions endowed by DCBs in polymer materials,including self-healing,chemical recycling,and shape controlling.Particularly,we pay much attention to the three-dimensional(3D)shape reconfiguration/programming,surface patterning,and reversible actuation.In addition,we also give the current issues,challenges,and opportunities on DCBs-containing materials and point out its developing directions in the future.展开更多
Li3VO4 shows great potential as an intercalation/de-intercalation type anode material for energy-storage devices. Morphology tailoring and surface modification are effective to enhance its lithium storage performance....Li3VO4 shows great potential as an intercalation/de-intercalation type anode material for energy-storage devices. Morphology tailoring and surface modification are effective to enhance its lithium storage performance. In this work, we fabricate carbon coated Li3VO4(C@LVO) rods by a facile morphology inheritance route. The as-prepared C@LVO rods are 400–800 nm in length and 200–400 nm in diameter,and orthorhombic phase with V5+. The unique core-shell rods structure greatly improves the transport ability of electrons and Li+. Such C@LVO submicron-rods as anode materials exhibit excellent rate capability(a reversible capability of 460,438, 416, 359 and 310 m A h g^-1 at 0.2, 1, 2, 5 and 10 C, respectively) and a high stable capacity of 440 and 313 m A h g^-1 up to 300 cycles at 0.2 and 5 C, respectively.展开更多
Porous Fe3O4 sub-micro particles with sphere-like, cube-like and walnut-like morphologies were obtained by a two-step process, and the electromagnetic properties of the Fe3O4 particle/wax composites were investigated....Porous Fe3O4 sub-micro particles with sphere-like, cube-like and walnut-like morphologies were obtained by a two-step process, and the electromagnetic properties of the Fe3O4 particle/wax composites were investigated. The reflect loss was less than -20 dB for all of the composites in different frequency ranges. The cube-like and walnut-like Fe3O4 composites exhibit improved complex permittivity and permeability and dual-frequency and wide bandwidth absorption characteristics, which is mainly attributed to the larger shape anisotropy. Such a high absorption property indicates that these porous Fe3O4 particles with various morphologies are very promising for electromagnetic wave absorptive materials.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 20973022 and 11472048)the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)
文摘Microencapsulation of phase change materials(Micro PCMs) has been paid special attention because of their extensive applications in saving and releasing energy. Micro PCMs containing paraffin with a melting point of 55 ℃ in polystyrene-divinylbenzene(P(St-DVB)) were prepared by suspension-like polymerization. The characterization of microcapsules by FTIR, DSC and TG proved that paraffin had been successfully encapsulated and the proportion of encapsulated paraffin was 49.8%—58.5%. The effects of polyvinylpyrrolidone(PVP) with different molecular weights serving as the suspension stabilizer were investigated in detail. The results illustrated that the type of PVP had a significant influence on the particle size of Micro PCMs. The average diameter of Micro PCMs decreased with an increasing molecular weight of PVP. Moreover, the crosslinker-postaddition method was adopted in this study to improve the morphology of P(St-DVB) Micro PCMs. SEM images showed that when the DVB was added at the 2nd hour of polymerization the morphology of obtained P(St-DVB) Micro PCMs exhibited good sphericity since it could avoid the influence of cross-linker agent during the nucleation period.
文摘January 10th-12th marked the opening of The13th(Hangzhou)Tanboocel Union Conference themed on"Green,Innovation,Intelligent and Win-win".Directed by China National Textile and Apparel Council(CNTAC)and sponsored by China Tanboocel Union,
文摘Hierarchical structures, in which structure is generated and controlled simultaneously at different size scales, have attracted increasing attention due to their potentials in both theoretical research and practical applications. In this review, a "non-classical crystallization" mechanism is discussed for their possibilities in morphology control of hierarchically-structured materials. Differently, this crystallization route is not based on the attaching and detaching of monomers as happened in the classical case, but through the self-organization of preformed building blocks as nanosized subunits, whose oriented attachment leads to mesocrystals with favorable morphology and texture. Representative materials including both inorganic and organic crystals are reported with possible mechanisms proposed. Synthetic protocols based on this mechanism provide unique inspirations for materials design and could be applied to morphological and structural control of new materials with optimized functions.
基金financially supported by the National Natural Science Foundation of China(21734006)the Foundation for Innovative Research Group of the National Natural Science Foundation of China(21821001)。
文摘In the past two decades,dynamic covalent chemistry has been greatly developed,which is mainly reflected in two aspects:1.new dynamic covalent bonds(DCBs)are continuously discovered;2.various DCBs have been introduced into polymer materials for different functions.These functional polymer materials have brought new opportunities for sustainable development.In this review,we provide an overview of various functions endowed by DCBs in polymer materials,including self-healing,chemical recycling,and shape controlling.Particularly,we pay much attention to the three-dimensional(3D)shape reconfiguration/programming,surface patterning,and reversible actuation.In addition,we also give the current issues,challenges,and opportunities on DCBs-containing materials and point out its developing directions in the future.
基金supported by the National Natural Science Foundation of China(21476019 and 21676017)
文摘Li3VO4 shows great potential as an intercalation/de-intercalation type anode material for energy-storage devices. Morphology tailoring and surface modification are effective to enhance its lithium storage performance. In this work, we fabricate carbon coated Li3VO4(C@LVO) rods by a facile morphology inheritance route. The as-prepared C@LVO rods are 400–800 nm in length and 200–400 nm in diameter,and orthorhombic phase with V5+. The unique core-shell rods structure greatly improves the transport ability of electrons and Li+. Such C@LVO submicron-rods as anode materials exhibit excellent rate capability(a reversible capability of 460,438, 416, 359 and 310 m A h g^-1 at 0.2, 1, 2, 5 and 10 C, respectively) and a high stable capacity of 440 and 313 m A h g^-1 up to 300 cycles at 0.2 and 5 C, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51072038, 50772025 and 21001035)NECT, Outstanding Youth Foundation of Heilongjiang Province (Grant No. JC201008)+4 种基金the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828)the Ministry of Science and Technology of China (Grant No. 2008DFR20420)the Fundamental Research Funds for the Central Universities (Grant Nos. HEUCFT1010, HEUCF101016, HEUCF20111124 and HEUCF101016)the National Basic Research Program of China (Grant No. 2007CB310500)Harbin Key Sci-Tech Project (Grant No. 2010AA4BG004)
文摘Porous Fe3O4 sub-micro particles with sphere-like, cube-like and walnut-like morphologies were obtained by a two-step process, and the electromagnetic properties of the Fe3O4 particle/wax composites were investigated. The reflect loss was less than -20 dB for all of the composites in different frequency ranges. The cube-like and walnut-like Fe3O4 composites exhibit improved complex permittivity and permeability and dual-frequency and wide bandwidth absorption characteristics, which is mainly attributed to the larger shape anisotropy. Such a high absorption property indicates that these porous Fe3O4 particles with various morphologies are very promising for electromagnetic wave absorptive materials.