Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing ...Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000–2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies(SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current dif ferences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient dif ferences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA diff erence. However, reconstructed ITFcaused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.展开更多
Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology.Compared with previous theoretical works,this model is not...Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology.Compared with previous theoretical works,this model is not restricted by weak topography,but provides an opportunity to examine the influence of topography.Ten typical cases are studied using different values of height and/or width of topography.By analyzing the baroclinic velocity fields,as well as their first eight baroclinic modes,it is found that the magnitude of baroclinic velocity increases and the vertical structure becomes increasingly complex as height increases or width decreases.However,when both height and width vary,while parameter s(the ratio of the topographic slope to the characteristic slope of the internal wave ray) remains invariant,the final pattern is influenced primarily by width.The conversion rate is studied and the results indicate that width determines where the conversion rate reaches a peak,and where it is positive or negative,whereas height affects only the magnitude.High and narrow topography is considerably more beneficial to converting energy from barotropic to baroclinic fields than low and wide topography.Furthermore,parameter s,which is an important non-dimensional parameter for internal tide generation,is not the sole parameter by which the baroclinic velocity fields and conversion rate are determined.展开更多
As it is well-known, the North Equatorial Current (NEC) bifurcates into the Kuroshio flowing northward and the equatorward Mindanao Current, which is well depicted by Munk's theory in 1950 in terms of its climatol...As it is well-known, the North Equatorial Current (NEC) bifurcates into the Kuroshio flowing northward and the equatorward Mindanao Current, which is well depicted by Munk's theory in 1950 in terms of its climatology. However, Munk's theory is unable to tell the NEC bifurcation variability with time. In the present paper, a time-dependent baroclinic model forced by wind, in which temporal and baroclinic terms are added to Munk's equation, is proposed to examine the seasonal variability of the NEC bifurcation latitude. An analytical solution is obtained, with which the seasonal variability can be well described: NEC bifurcation reaches its northernmost position in December and its southernmost position in June with a range of about 1° in latitude, consistent with previous results with observations. The present solution will degenerate to Munk's one in the case of steady and barotropic state.展开更多
The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current ...The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.展开更多
The transformation groups and symmetries of the baroclinic mode for rotating stratified flow can be obtained via the standard approach. Applying the symmetry group on some special solutions, the newly obtained results...The transformation groups and symmetries of the baroclinic mode for rotating stratified flow can be obtained via the standard approach. Applying the symmetry group on some special solutions, the newly obtained results disprove a known conjecture.展开更多
The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional win...The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional wind at 925 h Pa.The first mode(EOF1)exhibits an in-phase relationship among different CEF channels over the AAM region,which has received much attention owing to its tight linkage with ENSO.By contrast,the second mode(EOF2)possesses an out-of-phase relationship between the Bay of Bengal(BOB)CEF(90°E)and Australian CEF,among which the New Guinea CEF near 150°E shows the most significant opposite correlation with the BOB CEF.Observational and numerical model results suggest that the equatorially asymmetric heat source(sink)over the western(eastern)Maritime Continent,closely associated with the in-situ sea surface temperature anomaly,can induce cross-equatorial northerly(southerly)flow into the heating hemisphere,which dominates the out-of-phase relationship between the BOB and New Guinea CEFs.Furthermore,an equatorially symmetric heating over the central Pacific may indirectly change the CEFs by modulating the zonal atmospheric circulation near the Maritime Continent.展开更多
In this paper, the linear continuously stratified model of the abyssal circulation proposed by Pedlosky (1992) was extended to include the second order term -(γθ zzz ) in the vertical turbulent mixing parameterizati...In this paper, the linear continuously stratified model of the abyssal circulation proposed by Pedlosky (1992) was extended to include the second order term -(γθ zzz ) in the vertical turbulent mixing parameterization of - (w′θ′) z=k υθ zz -γθ zzz , in which k υ is a vertical diffusion coefficient, and γ is the second order coefficient of turbulent mixing (or simply called γ term and γ<0 is only allowed). The influence of the γ term on the baroclinic structure of the abyssal circulation driven by upwelling out of the abyss was investigated. It was found that the γ term has a noticeable influence on the baroclinic structure of the upwelling driven abyssal circulation. For uniform upwelling, it favors the baroclinic layering of the abyssal circulation in the eastern part of the basin, but prevents the layering in the west. In addition, this parameter was found to decrease the vertically averaging meridional velocity of the abyssal circulation from the west to the east on the southern boundary. For upwelling localized near the eastern boundary, the γ-term favors baroclinic layering of the abyssal circulation in the whole basin. Especially, on the southern boundary the γ-term could strengthen the vertically averaging meridional velocity in the west, but greatly weaken it in the east. The model presented here might be considered as an extension of the Pedlosky baroclinic model of the abyssal circulation.展开更多
基金Supported by the National Natural Science Foundation of China(No.41206018)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)+4 种基金the Chinese Academy of Sciences(No.XDA11010203)to WANG Jingthe Chinese Academy of Sciences(No.XDA11010301)the National Basic Research Program of China(973 Program)(No.2012CB956001)the Specialized Scientific Research Project for Public Welfare Industries(Meteorology)(No.GYHY201306018)the State Oceanic Administration of China(No.GASI-03-01-01-05)to YUAN Dongliang
文摘Impacts of the Indonesian Throughflow(ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000–2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies(SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current dif ferences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient dif ferences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA diff erence. However, reconstructed ITFcaused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.
基金Supported by the National Natural Science Foundation of China(No.41371496)the National High Technology Research and Development Program of China(863 Program)(No.2013AA122803)the Fundamental Research Funds for the Central Universities(Nos.201262007,201362033)
文摘Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology.Compared with previous theoretical works,this model is not restricted by weak topography,but provides an opportunity to examine the influence of topography.Ten typical cases are studied using different values of height and/or width of topography.By analyzing the baroclinic velocity fields,as well as their first eight baroclinic modes,it is found that the magnitude of baroclinic velocity increases and the vertical structure becomes increasingly complex as height increases or width decreases.However,when both height and width vary,while parameter s(the ratio of the topographic slope to the characteristic slope of the internal wave ray) remains invariant,the final pattern is influenced primarily by width.The conversion rate is studied and the results indicate that width determines where the conversion rate reaches a peak,and where it is positive or negative,whereas height affects only the magnitude.High and narrow topography is considerably more beneficial to converting energy from barotropic to baroclinic fields than low and wide topography.Furthermore,parameter s,which is an important non-dimensional parameter for internal tide generation,is not the sole parameter by which the baroclinic velocity fields and conversion rate are determined.
基金Supported by the Major Program of the National Natural Science Foundation of China (Nos. 40890150, 40890151)the National Basic Research Program of China (973 Program) (No.2007-CB411802)
文摘As it is well-known, the North Equatorial Current (NEC) bifurcates into the Kuroshio flowing northward and the equatorward Mindanao Current, which is well depicted by Munk's theory in 1950 in terms of its climatology. However, Munk's theory is unable to tell the NEC bifurcation variability with time. In the present paper, a time-dependent baroclinic model forced by wind, in which temporal and baroclinic terms are added to Munk's equation, is proposed to examine the seasonal variability of the NEC bifurcation latitude. An analytical solution is obtained, with which the seasonal variability can be well described: NEC bifurcation reaches its northernmost position in December and its southernmost position in June with a range of about 1° in latitude, consistent with previous results with observations. The present solution will degenerate to Munk's one in the case of steady and barotropic state.
基金supported by the National Basic Research Program of China (2007CB411807)the National Natural Science Foundation of China (40806072,41176009)
文摘The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.
基金Supported by National Natural Science Foundation of China under Grant Nos.10735030,10675065,and 90503006PCSIRT (IRT0734)+1 种基金the National Basic Research Programme of China under Grant Nos.2007CB814800K.C.Wong Magna Fund in Ningbo University
文摘The transformation groups and symmetries of the baroclinic mode for rotating stratified flow can be obtained via the standard approach. Applying the symmetry group on some special solutions, the newly obtained results disprove a known conjecture.
基金jointly supported by the National Key Research and Development Program of China[grant number 2016YFA0600601]the National Natural Science Foundation of China[grant numbers 42030601 and 41875087]。
文摘The interannual variability of cross-equatorial flows(CEFs)over the Asian–Australian monsoon(AAM)region during boreal summer was analyzed by applying the empirical orthogonal function(EOF)method to the meridional wind at 925 h Pa.The first mode(EOF1)exhibits an in-phase relationship among different CEF channels over the AAM region,which has received much attention owing to its tight linkage with ENSO.By contrast,the second mode(EOF2)possesses an out-of-phase relationship between the Bay of Bengal(BOB)CEF(90°E)and Australian CEF,among which the New Guinea CEF near 150°E shows the most significant opposite correlation with the BOB CEF.Observational and numerical model results suggest that the equatorially asymmetric heat source(sink)over the western(eastern)Maritime Continent,closely associated with the in-situ sea surface temperature anomaly,can induce cross-equatorial northerly(southerly)flow into the heating hemisphere,which dominates the out-of-phase relationship between the BOB and New Guinea CEFs.Furthermore,an equatorially symmetric heating over the central Pacific may indirectly change the CEFs by modulating the zonal atmospheric circulation near the Maritime Continent.
文摘In this paper, the linear continuously stratified model of the abyssal circulation proposed by Pedlosky (1992) was extended to include the second order term -(γθ zzz ) in the vertical turbulent mixing parameterization of - (w′θ′) z=k υθ zz -γθ zzz , in which k υ is a vertical diffusion coefficient, and γ is the second order coefficient of turbulent mixing (or simply called γ term and γ<0 is only allowed). The influence of the γ term on the baroclinic structure of the abyssal circulation driven by upwelling out of the abyss was investigated. It was found that the γ term has a noticeable influence on the baroclinic structure of the upwelling driven abyssal circulation. For uniform upwelling, it favors the baroclinic layering of the abyssal circulation in the eastern part of the basin, but prevents the layering in the west. In addition, this parameter was found to decrease the vertically averaging meridional velocity of the abyssal circulation from the west to the east on the southern boundary. For upwelling localized near the eastern boundary, the γ-term favors baroclinic layering of the abyssal circulation in the whole basin. Especially, on the southern boundary the γ-term could strengthen the vertically averaging meridional velocity in the west, but greatly weaken it in the east. The model presented here might be considered as an extension of the Pedlosky baroclinic model of the abyssal circulation.