This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures"...This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures".展开更多
BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
Constellations of regional satellite navigation systems are usually constituted of geostationary satellites (GEO) and inclined geostationary satellites (IGSO) for better service availability. Analysis of real data sho...Constellations of regional satellite navigation systems are usually constituted of geostationary satellites (GEO) and inclined geostationary satellites (IGSO) for better service availability. Analysis of real data shows that the pseudorange measurements of these two types of satellites contain significant multipath errors and code noise, and the multipath for GEO is extremely serious, which is harmful to system services. In contrast, multipath error of carrier phase measurements is less than 3 cm, which is smaller than the multipath of pseudorange measurements by two orders of magnitude. Using a particular combination of pseudorange and dual-frequency carrier phase measurements, the pseudorange multipath errors are detected, and their time varying features are analyzed. A real-time multipath correction algorithm is proposed in this paper, which is called CNMC (Code Noise and Multipath Correction). The algorithm decreases the influence of the multipath error and therefore ensures the performance of the system. Data processing experiments show that the multipath error level may be reduced from 0.5 m to 0.15 m by using this algorithm, and 60% of GEO multipath errors and 42% of IGSO multipath errors are successfully corrected with CNMC. Positioning experiments are performed with a constellation of 3 GEO plus 3 IGSO satellites. For dual-frequency users the East-West position accuracy is improved from 1.31 m to 0.94 m by using the CNMC algorithm, the South-North position accuracy is improved from 2.62 m to 2.29 m, and the vertical position accuracy is improved from 4.25 m to 3.05 m. After correcting multipath errors, the three-dimensional position accuracy is improved from 5.16 m to 3.94 m.展开更多
文摘This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures".
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
基金supported by the National High Technology Research and Development Program of China (863) (Grant Nos.2009Z12A324 and 2009AA12Z328)the National Natural Science Foundation of China (Grant Nos. 10703011, 11073047 and 11033004)the Science and Technology Commission of Shanghai (Grant No. 06DZ22101)
文摘Constellations of regional satellite navigation systems are usually constituted of geostationary satellites (GEO) and inclined geostationary satellites (IGSO) for better service availability. Analysis of real data shows that the pseudorange measurements of these two types of satellites contain significant multipath errors and code noise, and the multipath for GEO is extremely serious, which is harmful to system services. In contrast, multipath error of carrier phase measurements is less than 3 cm, which is smaller than the multipath of pseudorange measurements by two orders of magnitude. Using a particular combination of pseudorange and dual-frequency carrier phase measurements, the pseudorange multipath errors are detected, and their time varying features are analyzed. A real-time multipath correction algorithm is proposed in this paper, which is called CNMC (Code Noise and Multipath Correction). The algorithm decreases the influence of the multipath error and therefore ensures the performance of the system. Data processing experiments show that the multipath error level may be reduced from 0.5 m to 0.15 m by using this algorithm, and 60% of GEO multipath errors and 42% of IGSO multipath errors are successfully corrected with CNMC. Positioning experiments are performed with a constellation of 3 GEO plus 3 IGSO satellites. For dual-frequency users the East-West position accuracy is improved from 1.31 m to 0.94 m by using the CNMC algorithm, the South-North position accuracy is improved from 2.62 m to 2.29 m, and the vertical position accuracy is improved from 4.25 m to 3.05 m. After correcting multipath errors, the three-dimensional position accuracy is improved from 5.16 m to 3.94 m.