This investigation numerically examined the combined impacts of different turbulator shapes,Al_(2)O_(3)/water nanofluid,and inclined magnetic field on the thermal behavior of micro-scale inclined forward-facing step(M...This investigation numerically examined the combined impacts of different turbulator shapes,Al_(2)O_(3)/water nanofluid,and inclined magnetic field on the thermal behavior of micro-scale inclined forward-facing step(MSIFFS).The length and height for all turbulators were considered 0.0979 and 0.5 mm,respectively,and the Reynolds number varied from 5000 to 10000.In order to compare the skin friction coefficient(SFC) and the heat transfer rate(HTR)simultaneously,the thermal performance factor parameter(TPF) was selected.The results show that all considered cases equipped with turbulators were thermodynamically more advantageous over the simple MSIFFS.Besides,using Al_(2)O_(3)/water nanofluid with different nanoparticles volume fractions(NVF) in the presence of inclined magnetic field(IMF)increased HTR.With an increment of NVF from 1% to 4% and magnetic field density(MFD) from 0.002 to 0.008 T,HTR and subsequently TPF improved.The best result was observed for MSIFFS equipped with a trapezoidal-shaped turbulator with 4% Al_(2)O_(3) in the presence of IMF(B=0.008 T).The TPF increased with the augmentation of Re,and the maximum value of it was 5.2366 for MSIFFS equipped with a trapezoidal-shaped turbulator with 4% Al_(2)O_(3),B=0.008 T,and Re=10000.展开更多
The hydrodynamic characteristics generated by the standard Rushton or 45°-upward pitched-blade-turbine (PBT) impellers in a baffled reactor are numerically simulated for different off-bottom clearances (C= 1/3H a...The hydrodynamic characteristics generated by the standard Rushton or 45°-upward pitched-blade-turbine (PBT) impellers in a baffled reactor are numerically simulated for different off-bottom clearances (C= 1/3H and 1/2H) and agitator speeds (100, 150, 200, 250 and 300r·min^-1) by using FLUENT code (Version 5.4). The results are compared with the experimental and simulated data in the published papers and good agreement is observed. The shapes of the profile of mean velocities seem independent to the speed of agitators under the experimental conditions (100-300r·min^-1).展开更多
An experimental investigation was carried out on the effect of blade chordwise lean on the losses in highly loaded rectangular turbine cascades. Detailed measurements include 10 traverses from upstream to downstream o...An experimental investigation was carried out on the effect of blade chordwise lean on the losses in highly loaded rectangular turbine cascades. Detailed measurements include 10 traverses from upstream to downstream of the cascades with five-hole spherical probes. Compared with the experimental data of the conventional straight and pitchwise lean blades under the same conditions, it is shown that the effect of chordwise lean on the development of the cascade losses is similar to that of pitchwise lean. However, the chordwise lean produces smaller streamwise adverse pressure gradients near both endwalls and a smaller spanwise negative one starting from the acute angle side in the first part of the passages in chordwise lean cascade, thereby the saddle point separations and intensities of the passage vortices are weakened and the secondary vortex losses are cut down notably.展开更多
文摘This investigation numerically examined the combined impacts of different turbulator shapes,Al_(2)O_(3)/water nanofluid,and inclined magnetic field on the thermal behavior of micro-scale inclined forward-facing step(MSIFFS).The length and height for all turbulators were considered 0.0979 and 0.5 mm,respectively,and the Reynolds number varied from 5000 to 10000.In order to compare the skin friction coefficient(SFC) and the heat transfer rate(HTR)simultaneously,the thermal performance factor parameter(TPF) was selected.The results show that all considered cases equipped with turbulators were thermodynamically more advantageous over the simple MSIFFS.Besides,using Al_(2)O_(3)/water nanofluid with different nanoparticles volume fractions(NVF) in the presence of inclined magnetic field(IMF)increased HTR.With an increment of NVF from 1% to 4% and magnetic field density(MFD) from 0.002 to 0.008 T,HTR and subsequently TPF improved.The best result was observed for MSIFFS equipped with a trapezoidal-shaped turbulator with 4% Al_(2)O_(3) in the presence of IMF(B=0.008 T).The TPF increased with the augmentation of Re,and the maximum value of it was 5.2366 for MSIFFS equipped with a trapezoidal-shaped turbulator with 4% Al_(2)O_(3),B=0.008 T,and Re=10000.
基金Supported by the National Natural Science Foundation of China (No. 20028607).
文摘The hydrodynamic characteristics generated by the standard Rushton or 45°-upward pitched-blade-turbine (PBT) impellers in a baffled reactor are numerically simulated for different off-bottom clearances (C= 1/3H and 1/2H) and agitator speeds (100, 150, 200, 250 and 300r·min^-1) by using FLUENT code (Version 5.4). The results are compared with the experimental and simulated data in the published papers and good agreement is observed. The shapes of the profile of mean velocities seem independent to the speed of agitators under the experimental conditions (100-300r·min^-1).
文摘An experimental investigation was carried out on the effect of blade chordwise lean on the losses in highly loaded rectangular turbine cascades. Detailed measurements include 10 traverses from upstream to downstream of the cascades with five-hole spherical probes. Compared with the experimental data of the conventional straight and pitchwise lean blades under the same conditions, it is shown that the effect of chordwise lean on the development of the cascade losses is similar to that of pitchwise lean. However, the chordwise lean produces smaller streamwise adverse pressure gradients near both endwalls and a smaller spanwise negative one starting from the acute angle side in the first part of the passages in chordwise lean cascade, thereby the saddle point separations and intensities of the passage vortices are weakened and the secondary vortex losses are cut down notably.