To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The...To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The free surface motion is simulated by the volume-of-fluid method and the standard k-εturbulence model.Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model.To study the influence of the sloped bottom on the liquid sloshing,different slope sizes and filling ratios are numerically simulated at the lowest natural frequency.The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters.The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size.The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5%to 20%.However,the relationship between the peak pressure and slope ratio is more significant with lower filling rates.Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%).The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.展开更多
基金The National Natural Science Foundation of China(No.51905093)the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20180392)。
文摘To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The free surface motion is simulated by the volume-of-fluid method and the standard k-εturbulence model.Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model.To study the influence of the sloped bottom on the liquid sloshing,different slope sizes and filling ratios are numerically simulated at the lowest natural frequency.The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters.The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size.The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5%to 20%.However,the relationship between the peak pressure and slope ratio is more significant with lower filling rates.Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%).The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.