A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the proc...A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.展开更多
A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, ...A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths(200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients(1000, 2000 and 2500 W/(m2·K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m2·K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.展开更多
An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superhe...An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.展开更多
The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compare...The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.展开更多
基金Project (51222405) supported by the National Science Foundation of Outstanding Young Scholars of ChinaProject (50974038) supported by the National Natural Science Foundation of China+1 种基金Project (132002) supported by the Fok Ying Tong Education Foundation, ChinaProject (2011CB610405) supported by the National Basic Research Program of China
文摘A novel semisolid rheo-rolling process of A2017 alloy was achieved by combining the shape rolling mill with the vibrating sloping plate device. The microstructure evolution and solidification behaviors during the process were investigated. The high cooling rate caused by the sloping plate and stirring action caused by the vibration and metal flow lead to a high nucleation rate as well as two primary grain growth patterns, direct globular growth as well as dendrite growth and subsequent breakage, which causes the formation of fine spherical or rosette primary grains. During the rolling process, the grains of the strip were elongated. The primary grain size of A2017 alloy strip increases with the increment of casting temperature. When the casting temperature was between 650 °C and 660 °C, A2017 alloy strip with good quality was produced by the proposed process. The microstructures of the strip are mainly composed of spherical or rosette grains.
基金financial support received from Ministry of Mines, TIFAC, and Department of Science and Technology
文摘A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths(200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients(1000, 2000 and 2500 W/(m2·K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m2·K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.
文摘An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.
文摘The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.