A 2D transient mathematical model was established to separately describe the anode bubble dynamics and the bubbleinduced electrolyte motion in the rare earth electrolysis cell with horizontal electrode.Results indicat...A 2D transient mathematical model was established to separately describe the anode bubble dynamics and the bubbleinduced electrolyte motion in the rare earth electrolysis cell with horizontal electrode.Results indicate that with the increase in the anode inclined angle,the maximum bubble thickness is increased gradually.Furthermore,compared with the conventional anode,the inclined and chamfered anodes are conductive to the bubble length reduction and the bubble velocity improvement.Meanwhile,the bubble-induced electrolyte motion in the electrolysis cell can improve the distribution and transport process of oxyfluorides,thereby enhancing the current efficiency.Finally,a novel feeding method based on the electrolyte flow is proposed.展开更多
基金National Natural Science Foundation of China(52101165)Inner Mongolia Science and Technology Major Project(2020ZD0010)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-3)。
文摘A 2D transient mathematical model was established to separately describe the anode bubble dynamics and the bubbleinduced electrolyte motion in the rare earth electrolysis cell with horizontal electrode.Results indicate that with the increase in the anode inclined angle,the maximum bubble thickness is increased gradually.Furthermore,compared with the conventional anode,the inclined and chamfered anodes are conductive to the bubble length reduction and the bubble velocity improvement.Meanwhile,the bubble-induced electrolyte motion in the electrolysis cell can improve the distribution and transport process of oxyfluorides,thereby enhancing the current efficiency.Finally,a novel feeding method based on the electrolyte flow is proposed.