A simple graph G on n vettices is said to be a simple MCD-graph if G has no two cyties having the same length and has the maximum possible number of edges.Two results of the number of cy cles in G are given by introdu...A simple graph G on n vettices is said to be a simple MCD-graph if G has no two cyties having the same length and has the maximum possible number of edges.Two results of the number of cy cles in G are given by introdueing the Concept of a path decomposition and by them,the following theorem is proved:If G is a simple MCD-graph,then G is not a 2-connected planar graph and for all n except seven integer,G is not a 2-connected graph on n vertices containing a subgraph homeomor phic to K_4.展开更多
A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope's stabilization in a coal-coking plant, and the result was compared with that employing the u...A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope's stabilization in a coal-coking plant, and the result was compared with that employing the ultimate equilibrium method. Based on the results of finite element analysis, the stress contour graphs and displacement vector graphs at different construction steps were obtained, and the behavior of the slope during stabilization construction process was analyzed quantitatively. Based on the analysis of safety factors of three different schemes of stabilization and two different construction schemes, the assessment of stability and bracing design of the construction process were performed. The results show that the original reinforcement design is improper; the stability of the rock slope is controlled by a developed structural plane, the stability factor after excavation is less than 1, and the free surface should be braced in time; for stability, the construction sequence should adopt that bracing follows excavation step by step up to down; the local slide occurred during the construction process agrees with the dangerous slide determined by the numerical analysis, which proves the validity and rationality of the adopted method.展开更多
In order to investigate the seismic performance of geosynthetic reinforced and pile supported(GRPS) embankment under seismic loads, an input method for three-dimensional oblique incidence of P wave was proposed. This ...In order to investigate the seismic performance of geosynthetic reinforced and pile supported(GRPS) embankment under seismic loads, an input method for three-dimensional oblique incidence of P wave was proposed. This method is based on the explicit finite element method while considering the viscous-spring artificial boundary(VSAB) condition. Using the proposed method, a numerical study was conducted, and the influence of oblique incidence on the seismic response of GRPS embankment under the oblique incident P waves was analyzed. The results indicate that in comparison with vertical incidence, the oblique incidence can significantly increase the displacement, velocity and acceleration of key locations in the GRPS embankment. The existence of geosynthetics can alleviate the impact of seismic load on the response of the embankment to a certain degree. Moreover, the number of reinforcement layers and modulus of geogrid also greatly influence the seismic performance of GRPS embankment.展开更多
A wide-angle beam propagation algorithm based on an oblique coordinate system is presented.A waveguide with tilted structure is simulated in terms of this method and the conventional wide-angle BPM. By comparing the r...A wide-angle beam propagation algorithm based on an oblique coordinate system is presented.A waveguide with tilted structure is simulated in terms of this method and the conventional wide-angle BPM. By comparing the results,it is found that this method is effective especially in tilted structure. The Y-junction has been also simulated in terms of this new method,and the good results are obtained.展开更多
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was...Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.展开更多
In this paper, we report on an analytical solution for beam-type skewed highway bridges subjected to truck loading. To confirm the analysis derivation and the solution obtained, the moment and shear responses to the d...In this paper, we report on an analytical solution for beam-type skewed highway bridges subjected to truck loading. To confirm the analysis derivation and the solution obtained, the moment and shear responses to the design truck load are acquired using the analytical method for a number of typical US highway bridges and compared with those from numerical finite element method (FEM) analysis. In addition, the lateral distribution factors for moment and shear used in routine design are investigated based on comparison of the analytical approach and FEM. The analytical solution is shown in good agreement with the FEM result. Furthermore, the relevant provisions in the American Association of State Highway Transportation Officials' (AASHTO's) LRFD Bridge Design Specifications are also discussed here for comparison, particularly with respect to design application. It is observed that the design code specified load distribution factor may not predict well, especially for shear and/or severe skew.展开更多
PLANNED in 2003,construction of the 1,092-meter-long ShanghaiNantong Railway Yangtze River Bridge–the world’s longest rail-cumroad cable-stayed steel bridge–started in 2014.On completion in 2019,it will span the 13...PLANNED in 2003,construction of the 1,092-meter-long ShanghaiNantong Railway Yangtze River Bridge–the world’s longest rail-cumroad cable-stayed steel bridge–started in 2014.On completion in 2019,it will span the 130 km.between the two cities,shortening to one hour the drive from Shanghai to Nantong.展开更多
This paper presents a novel precision delay circuit design for high-speed data acquisition systems. Many studies have suggested that various advanced electronic measurement apparatuses require that the delay circuit s...This paper presents a novel precision delay circuit design for high-speed data acquisition systems. Many studies have suggested that various advanced electronic measurement apparatuses require that the delay circuit should have a high precision and a short delay interval. Practically, however, such measurement apparatuses are low in preci- sion and long in delay interval at present. The structure and function of a data acquisition system is introduced first; then the principle of ramp-based precision delay circuits and the digitally programmable delay generator is studied and the precision delay circuit is designed. The authors also demonstrated 8-bit programmable delay circuits with a timing pre- cision of 10 ps. Therefore the programmable precision delay circuit here presented has a higher precision, shorter inter- val and more detectable function than any other precision delay circuit.展开更多
The Mesoproterozoic mafic dyke swarms are extensively distributedin the central North China Craton(NCC) including North Shanxi, Wutai and Lüliang areas, which are not deformed and metamorphic but high magnetic, s...The Mesoproterozoic mafic dyke swarms are extensively distributedin the central North China Craton(NCC) including North Shanxi, Wutai and Lüliang areas, which are not deformed and metamorphic but high magnetic, so the dyke swarms become the mark to compare the high meta-morphic rock areas in magnetism. Based on the analysis of paleomagnetism of mafic dyke swarms in North Shanxi, Wutai and Lüliang areas, NCC inclined southward about 18° so that North Shanxi lifted up and rotated 10° left to Wutai area. The dyke swarms in Lüliang developed later than in North Shanxi and Wutai area. The NNW-trending and WNW-trending dyke swarms developed in Lüliang while the North China Plate moved northward consistently so that the paleomagnetism of dyke swarms in Lüliang is greatly different from North Shanxi and Wutai area.展开更多
文摘A simple graph G on n vettices is said to be a simple MCD-graph if G has no two cyties having the same length and has the maximum possible number of edges.Two results of the number of cy cles in G are given by introdueing the Concept of a path decomposition and by them,the following theorem is proved:If G is a simple MCD-graph,then G is not a 2-connected planar graph and for all n except seven integer,G is not a 2-connected graph on n vertices containing a subgraph homeomor phic to K_4.
基金Scientific and Technological Support and Guidance Plan Projects of Zhejiang Province(Grant No.2008C23019)
文摘A self-developed elasto-plastic finite element program was used to analyze the construction sequence of high rock slope's stabilization in a coal-coking plant, and the result was compared with that employing the ultimate equilibrium method. Based on the results of finite element analysis, the stress contour graphs and displacement vector graphs at different construction steps were obtained, and the behavior of the slope during stabilization construction process was analyzed quantitatively. Based on the analysis of safety factors of three different schemes of stabilization and two different construction schemes, the assessment of stability and bracing design of the construction process were performed. The results show that the original reinforcement design is improper; the stability of the rock slope is controlled by a developed structural plane, the stability factor after excavation is less than 1, and the free surface should be braced in time; for stability, the construction sequence should adopt that bracing follows excavation step by step up to down; the local slide occurred during the construction process agrees with the dangerous slide determined by the numerical analysis, which proves the validity and rationality of the adopted method.
基金Projects(41202220,41472278,51478438)supported by the National Natural Science Foundation of ChinaProjects(20120022120003,20134101120009)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(14A560014)supported by the Key Project of Education Department in Henan Province,China
文摘In order to investigate the seismic performance of geosynthetic reinforced and pile supported(GRPS) embankment under seismic loads, an input method for three-dimensional oblique incidence of P wave was proposed. This method is based on the explicit finite element method while considering the viscous-spring artificial boundary(VSAB) condition. Using the proposed method, a numerical study was conducted, and the influence of oblique incidence on the seismic response of GRPS embankment under the oblique incident P waves was analyzed. The results indicate that in comparison with vertical incidence, the oblique incidence can significantly increase the displacement, velocity and acceleration of key locations in the GRPS embankment. The existence of geosynthetics can alleviate the impact of seismic load on the response of the embankment to a certain degree. Moreover, the number of reinforcement layers and modulus of geogrid also greatly influence the seismic performance of GRPS embankment.
文摘A wide-angle beam propagation algorithm based on an oblique coordinate system is presented.A waveguide with tilted structure is simulated in terms of this method and the conventional wide-angle BPM. By comparing the results,it is found that this method is effective especially in tilted structure. The Y-junction has been also simulated in terms of this new method,and the good results are obtained.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2010G018-A-3)supported by Technology Research and Development Program of the Ministry of Railways,China
文摘Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.
文摘In this paper, we report on an analytical solution for beam-type skewed highway bridges subjected to truck loading. To confirm the analysis derivation and the solution obtained, the moment and shear responses to the design truck load are acquired using the analytical method for a number of typical US highway bridges and compared with those from numerical finite element method (FEM) analysis. In addition, the lateral distribution factors for moment and shear used in routine design are investigated based on comparison of the analytical approach and FEM. The analytical solution is shown in good agreement with the FEM result. Furthermore, the relevant provisions in the American Association of State Highway Transportation Officials' (AASHTO's) LRFD Bridge Design Specifications are also discussed here for comparison, particularly with respect to design application. It is observed that the design code specified load distribution factor may not predict well, especially for shear and/or severe skew.
文摘PLANNED in 2003,construction of the 1,092-meter-long ShanghaiNantong Railway Yangtze River Bridge–the world’s longest rail-cumroad cable-stayed steel bridge–started in 2014.On completion in 2019,it will span the 130 km.between the two cities,shortening to one hour the drive from Shanghai to Nantong.
文摘This paper presents a novel precision delay circuit design for high-speed data acquisition systems. Many studies have suggested that various advanced electronic measurement apparatuses require that the delay circuit should have a high precision and a short delay interval. Practically, however, such measurement apparatuses are low in preci- sion and long in delay interval at present. The structure and function of a data acquisition system is introduced first; then the principle of ramp-based precision delay circuits and the digitally programmable delay generator is studied and the precision delay circuit is designed. The authors also demonstrated 8-bit programmable delay circuits with a timing pre- cision of 10 ps. Therefore the programmable precision delay circuit here presented has a higher precision, shorter inter- val and more detectable function than any other precision delay circuit.
基金the National Natural Science Foundation of China (Grant No. 49832030).
文摘The Mesoproterozoic mafic dyke swarms are extensively distributedin the central North China Craton(NCC) including North Shanxi, Wutai and Lüliang areas, which are not deformed and metamorphic but high magnetic, so the dyke swarms become the mark to compare the high meta-morphic rock areas in magnetism. Based on the analysis of paleomagnetism of mafic dyke swarms in North Shanxi, Wutai and Lüliang areas, NCC inclined southward about 18° so that North Shanxi lifted up and rotated 10° left to Wutai area. The dyke swarms in Lüliang developed later than in North Shanxi and Wutai area. The NNW-trending and WNW-trending dyke swarms developed in Lüliang while the North China Plate moved northward consistently so that the paleomagnetism of dyke swarms in Lüliang is greatly different from North Shanxi and Wutai area.