Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi La...Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi Lamb wave modes are mostly based on various timefrequency methods such as Wigner-Ville distribution, shorttime Fourier transform, and recently explored wavelet transform(WT). Frankly speaking, uses of these signal processing methods improve the accuracy of the arrival time extraction to a great extent relative to directly extract arrival times in time-domain from Lamb waveforms. Hilbert-Huang transform(HHT) is also an efficient way for analyzing and processing non-stationary signals. The resolving power of time and frequency is restricted from Heisenberg principle in wavelet analysis, while in HHT, the time resolving power is precise and steady, and frequency resolving power is adaptive according to signal intrinsic characteristics. Conclusion can be made that the HI-IT method is more adaptive than WT anal;/sis in ~.!~M~ zing non-stationary signals. Based on the abo~, ~tiaf method is attempted to extract arrival times from Lamb waveforms in this paper. The Lamb wave tomography images generated with arrival times from HHT method were compared with those of WT. The results show that the new method improves the quality of tomography image, which demonstrates the applicability of HHT method in extracting arrival times of Lamb waves.展开更多
A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to op...A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to optical coherence tomography (OCT) signal processing implementation under graphics processing unit (GPU) architecture. Accurately, assigning the wavelength to each pixel of the detector is of paramount importance to obtain high quality images and increase signal to noise ratio (SNR). High quality imaging can be achieved by proper calibration methods, here performed by phase calibration and interpolation. SNR was assessed employing two approaches, single spectrum moving window averaging and consecutive spectra data averaging, to investigate the optimized method and factor for background noise reduction. It was demonstrated that the consecutive spectra averaging had better SNR performance.展开更多
基金National Natural Science Foundation of China(No.10504020,10874110)Shanghai Leading Academic Discipline Project,China(No.S30108)Science and Technology Commission of Shanghai Municipality,China(No.08DZ2231100)
文摘Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi Lamb wave modes are mostly based on various timefrequency methods such as Wigner-Ville distribution, shorttime Fourier transform, and recently explored wavelet transform(WT). Frankly speaking, uses of these signal processing methods improve the accuracy of the arrival time extraction to a great extent relative to directly extract arrival times in time-domain from Lamb waveforms. Hilbert-Huang transform(HHT) is also an efficient way for analyzing and processing non-stationary signals. The resolving power of time and frequency is restricted from Heisenberg principle in wavelet analysis, while in HHT, the time resolving power is precise and steady, and frequency resolving power is adaptive according to signal intrinsic characteristics. Conclusion can be made that the HI-IT method is more adaptive than WT anal;/sis in ~.!~M~ zing non-stationary signals. Based on the abo~, ~tiaf method is attempted to extract arrival times from Lamb waveforms in this paper. The Lamb wave tomography images generated with arrival times from HHT method were compared with those of WT. The results show that the new method improves the quality of tomography image, which demonstrates the applicability of HHT method in extracting arrival times of Lamb waves.
文摘A spectral calibration technique, a data processing method and the importance of calibration and re-sampling methods for the spectral domain optical coherence tomography system were numerically studied, targeted to optical coherence tomography (OCT) signal processing implementation under graphics processing unit (GPU) architecture. Accurately, assigning the wavelength to each pixel of the detector is of paramount importance to obtain high quality images and increase signal to noise ratio (SNR). High quality imaging can be achieved by proper calibration methods, here performed by phase calibration and interpolation. SNR was assessed employing two approaches, single spectrum moving window averaging and consecutive spectra data averaging, to investigate the optimized method and factor for background noise reduction. It was demonstrated that the consecutive spectra averaging had better SNR performance.