Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones an...Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.展开更多
Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determi...Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively) determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique. To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.展开更多
Three-dimensional reconstructions from tomography slices are paid great attention in medical applications nowadays. This paper introduces the design and the implement of VolGraph system: a new, inexpensive, PC-based v...Three-dimensional reconstructions from tomography slices are paid great attention in medical applications nowadays. This paper introduces the design and the implement of VolGraph system: a new, inexpensive, PC-based visualization tool for three-dimensional medical reconstructions, which fully integrates the latest popular visualization algorithms ranging from classical surface rendering algorithm to volume rendering algorithms, such as Ray Casting, Splatting, and Shear-Warp.The input of VolGraph can be medical ima- ges including CT, MRI, etc, and the output can be in common image, VRML/XML or animation formats. Practice proves that the realization of a medical volume visualization system is now feasible on desktop PCs.展开更多
Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding th...Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanornaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography (OCT), X-ray computed tomography (CT) imaging, two-photon luminescence (TPL), photoacoustic tomography (PAT), magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS) and positron emission tomography (PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.展开更多
The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake fau...The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake faults. Dislocation theory in an elastic half space indicates that if a seismic rupture directly runs up to the ground surface, there exist zero points of horizontal strain in the surface deformation, which correspond to the rupture depths, except for pure strike-slip faults. In this study, we use numerical simulations to investigate the possibility of inferring rupture depths from zero-strain points for cases of buried faults and heterogeneous media. The results show that the correspondence of zero-strain points to the rupture depths can be influenced by the heterogeneity of the underground media and the stress field. For buried faults, the correspondence relationship is approximately valid when the fault depth is <1 km. In addition, the range of earthquake fault dip angles can be estimated by horizontal displacements on the ground. We also study how to determine the rupture depths of faults from InSAR data after large earthquakes, and successfully apply the method to the 2008 Wenchuan earthquake. The method proposed here, which determines the parameters of fault geometry according to surface deformation, is simple and easy to perform. With independent of aftershocks, it can provide valuable constraints to kinematic inversions.展开更多
基金supported by a grant from the Ministry of Land and Resources(Project No:19961300002011)for the regional geological survey of the Jinggangshan City section,Yaqian section,Tianhe section,Nashan section of the 1:50,000 geologic mapa key orientation grant(No.KZCXZ-SW-117)of CAS Knowledge Innovation Project for the constitution,structure and evolution of the geotectonic systems of South China Sea and its adjacent regions.
文摘Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.
文摘Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively) determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique. To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.
文摘Three-dimensional reconstructions from tomography slices are paid great attention in medical applications nowadays. This paper introduces the design and the implement of VolGraph system: a new, inexpensive, PC-based visualization tool for three-dimensional medical reconstructions, which fully integrates the latest popular visualization algorithms ranging from classical surface rendering algorithm to volume rendering algorithms, such as Ray Casting, Splatting, and Shear-Warp.The input of VolGraph can be medical ima- ges including CT, MRI, etc, and the output can be in common image, VRML/XML or animation formats. Practice proves that the realization of a medical volume visualization system is now feasible on desktop PCs.
基金supported by the Ministry of Science and Technology of China (2016YFA0201600)the National Natural Science Foundation of China (21477029)+2 种基金the Chinese Academy of Sciences (XDA09040400)Beijing Key Laboratory of Environmental Toxicology (2015HJDL01)the State Key Laboratory of Integrated Management of Pest Insects and Rodents (ChineseIPM1613)
文摘Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanornaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography (OCT), X-ray computed tomography (CT) imaging, two-photon luminescence (TPL), photoacoustic tomography (PAT), magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS) and positron emission tomography (PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41074070, 41174035)the SinoProbe Program (Grant No. SinoProbe-08-01)
文摘The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake faults. Dislocation theory in an elastic half space indicates that if a seismic rupture directly runs up to the ground surface, there exist zero points of horizontal strain in the surface deformation, which correspond to the rupture depths, except for pure strike-slip faults. In this study, we use numerical simulations to investigate the possibility of inferring rupture depths from zero-strain points for cases of buried faults and heterogeneous media. The results show that the correspondence of zero-strain points to the rupture depths can be influenced by the heterogeneity of the underground media and the stress field. For buried faults, the correspondence relationship is approximately valid when the fault depth is <1 km. In addition, the range of earthquake fault dip angles can be estimated by horizontal displacements on the ground. We also study how to determine the rupture depths of faults from InSAR data after large earthquakes, and successfully apply the method to the 2008 Wenchuan earthquake. The method proposed here, which determines the parameters of fault geometry according to surface deformation, is simple and easy to perform. With independent of aftershocks, it can provide valuable constraints to kinematic inversions.