Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the ben...Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.展开更多
Dongjiahe Coal Mine belongs to the Carboniferous Permian coal field which has a high degree of karst and fissure development.This paper takes the working face of Dongjiahe Coal Mine as an example;through the microseis...Dongjiahe Coal Mine belongs to the Carboniferous Permian coal field which has a high degree of karst and fissure development.This paper takes the working face of Dongjiahe Coal Mine as an example;through the microseismic(MS)monitoring system arranged on the working face,the moment tensor theory was used to invert the focal mechanism solution of the anomalous area of the floor MS event;combining the numerical simulation and field data,the underlying floor faults were identified by the stress inversion method.The results show that:1)Moment tensors were decomposed into three components and the main type of rupture in this area is mixed failure according to the relative criterion;2)The hidden fault belongs to the reversed fault,its dip angle is approximately 70°,and the rupture length is 21 m determined by the inversion method of the initial dynamic polarity and stress in the focal mechanism;3)The failure process of the fault is divided into three stages by numerical simulation method combined with the temporal and spatial distribution of MS events.The results can provide a reference for early warning and evaluation of similar coal mine water inrush risks.展开更多
In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula fo...In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
This paper deals with the two-dimensional problem of elastic wave scattering from a finite crack at the interface between a coated material layer and its substrate. By adopting the Fourier transform method and introdu...This paper deals with the two-dimensional problem of elastic wave scattering from a finite crack at the interface between a coated material layer and its substrate. By adopting the Fourier transform method and introducing the crack opening displacement function, the boundary value problem is simplified for numerically solving a system of Cauchy-type singular integral equations by means of Jacobi polynomial expansion. The stress intensity factors and the crack opening displacements are defined in terms of the integral equations solutions. The influence of the dimensionless wave number and the ratio of crack length to layer thickness on the stress intensity factors and crack opening displacements are discussed.展开更多
文摘Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.
基金Project(2017YFC1503103)supported by the National Key Research and Development Plan of ChinaProjects(51774064,51974055,41941018)supported by the National Natural Science Foundation of China+1 种基金Project(DUT20GJ216)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51627804)supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development,China。
文摘Dongjiahe Coal Mine belongs to the Carboniferous Permian coal field which has a high degree of karst and fissure development.This paper takes the working face of Dongjiahe Coal Mine as an example;through the microseismic(MS)monitoring system arranged on the working face,the moment tensor theory was used to invert the focal mechanism solution of the anomalous area of the floor MS event;combining the numerical simulation and field data,the underlying floor faults were identified by the stress inversion method.The results show that:1)Moment tensors were decomposed into three components and the main type of rupture in this area is mixed failure according to the relative criterion;2)The hidden fault belongs to the reversed fault,its dip angle is approximately 70°,and the rupture length is 21 m determined by the inversion method of the initial dynamic polarity and stress in the focal mechanism;3)The failure process of the fault is divided into three stages by numerical simulation method combined with the temporal and spatial distribution of MS events.The results can provide a reference for early warning and evaluation of similar coal mine water inrush risks.
文摘In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
基金Project (No. 10372058) supported by the National Natural Science Foundation of China
文摘This paper deals with the two-dimensional problem of elastic wave scattering from a finite crack at the interface between a coated material layer and its substrate. By adopting the Fourier transform method and introducing the crack opening displacement function, the boundary value problem is simplified for numerically solving a system of Cauchy-type singular integral equations by means of Jacobi polynomial expansion. The stress intensity factors and the crack opening displacements are defined in terms of the integral equations solutions. The influence of the dimensionless wave number and the ratio of crack length to layer thickness on the stress intensity factors and crack opening displacements are discussed.