团队断裂带基于团队整合与协同理念,考虑团队成员多重特征,丰富了团队属性的研究。其概念自1998年提出后,受到了广泛关注。探讨团队断裂带与创新的关系,从中国知网(CNKI)和Web of Science数据库中选取"团队断裂带"为关键词,运...团队断裂带基于团队整合与协同理念,考虑团队成员多重特征,丰富了团队属性的研究。其概念自1998年提出后,受到了广泛关注。探讨团队断裂带与创新的关系,从中国知网(CNKI)和Web of Science数据库中选取"团队断裂带"为关键词,运用CitespaceⅢ软件,进行知识计量图谱分析和信息挖掘。在此基础上,对相关文献进行梳理与总结,探究团队断裂带与创新的关系,从不同侧面探究了两者之间的作用机制。团队断裂带已经被分解出不同类型,需要更多的强度计算方法,分析断裂带宽度计算方法对创新的影响。通过构建团队断裂带与创新关系的研究框架模型,总结现有研究的脉络,进而指出现有研究的不足与未来研究方向。展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
The tensile properties of geotextile are analyzed with the boundary element method, with special emphasis put on the influence of specimen width on geotextile breaking strength. The theoretical and experimental result...The tensile properties of geotextile are analyzed with the boundary element method, with special emphasis put on the influence of specimen width on geotextile breaking strength. The theoretical and experimental results showed that narrow specimen would underestimate the tensile strength of the geotextile. During testing procedure, the lateral contraction of the specimen is the main reason that causes the breaking strength to be on the lower side. The theoretical results also indicate that the breaking strength of the geotextile would arrive at a fixed value when the specimen width is increased to a certain extent.展开更多
板内走滑断裂的内部结构具有控储和控藏作用.在断缝体油气藏勘探开发过程中,由于走滑断裂带内部结构具有高度非均质性,需要对其内部结构进行刻画.综合岩心、测井和地震资料,对鄂尔多斯盆地南部泾河油田延长组走滑断裂带进行了走向分段...板内走滑断裂的内部结构具有控储和控藏作用.在断缝体油气藏勘探开发过程中,由于走滑断裂带内部结构具有高度非均质性,需要对其内部结构进行刻画.综合岩心、测井和地震资料,对鄂尔多斯盆地南部泾河油田延长组走滑断裂带进行了走向分段和侧向分带研究,并提出了利用综合裂缝指数测井(comprehensive fracture index log,CFI)和断层形态指数地震属性(fault shape index attribute,FSI)累积曲线定量划分损伤带边界的方法.结果表明,泾河油田延长组走滑断裂带以张扭段和走滑段为主,压扭段仅少量发育.CFI和FSI均与裂缝密度呈正相关关系,根据累积CFI和累积FSI曲线的梯度变化可以刻画地下走滑断裂的损伤带边界.泾河油田延长组走滑断裂带内单条断裂的宽度主要在160~300 m,且张扭段的宽度最大,其次为压扭段和走滑段.展开更多
文摘团队断裂带基于团队整合与协同理念,考虑团队成员多重特征,丰富了团队属性的研究。其概念自1998年提出后,受到了广泛关注。探讨团队断裂带与创新的关系,从中国知网(CNKI)和Web of Science数据库中选取"团队断裂带"为关键词,运用CitespaceⅢ软件,进行知识计量图谱分析和信息挖掘。在此基础上,对相关文献进行梳理与总结,探究团队断裂带与创新的关系,从不同侧面探究了两者之间的作用机制。团队断裂带已经被分解出不同类型,需要更多的强度计算方法,分析断裂带宽度计算方法对创新的影响。通过构建团队断裂带与创新关系的研究框架模型,总结现有研究的脉络,进而指出现有研究的不足与未来研究方向。
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
文摘The tensile properties of geotextile are analyzed with the boundary element method, with special emphasis put on the influence of specimen width on geotextile breaking strength. The theoretical and experimental results showed that narrow specimen would underestimate the tensile strength of the geotextile. During testing procedure, the lateral contraction of the specimen is the main reason that causes the breaking strength to be on the lower side. The theoretical results also indicate that the breaking strength of the geotextile would arrive at a fixed value when the specimen width is increased to a certain extent.
文摘板内走滑断裂的内部结构具有控储和控藏作用.在断缝体油气藏勘探开发过程中,由于走滑断裂带内部结构具有高度非均质性,需要对其内部结构进行刻画.综合岩心、测井和地震资料,对鄂尔多斯盆地南部泾河油田延长组走滑断裂带进行了走向分段和侧向分带研究,并提出了利用综合裂缝指数测井(comprehensive fracture index log,CFI)和断层形态指数地震属性(fault shape index attribute,FSI)累积曲线定量划分损伤带边界的方法.结果表明,泾河油田延长组走滑断裂带以张扭段和走滑段为主,压扭段仅少量发育.CFI和FSI均与裂缝密度呈正相关关系,根据累积CFI和累积FSI曲线的梯度变化可以刻画地下走滑断裂的损伤带边界.泾河油田延长组走滑断裂带内单条断裂的宽度主要在160~300 m,且张扭段的宽度最大,其次为压扭段和走滑段.