Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for ...Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for potential future. The method of analysis is a combination of activity background of historical strong earthquakes mainly show ~ ( 1 ) The spatial distribution of b-values strong and large earthquakes in the spatial distribution of b-values with and current seismicity. Our results indicates significant heterogeneity in the studied area, which reflects the spatial difference of cumulative stress levels along various fault zones and segments. (2) Three anomalously low b-value areas with different dimensions were identified along the Mabian-Yanjin fault zone. These anomalies can be asperities under relatively high cumulated stress levels. Two asperities are located in the north of Mabian county, in Lidian town in western Muchuan county, and near Yanjin at the south end of the fault zone. These two areas represent potential large earthquake seismogenic sites around the Mabian area in the near future. Besides them, the third relatively smaller asperity is identified at southern Suijiang, as another potential strong- earthquake source. (3) An asperity along the southwestern segment of the Longquanshan fault zone indicates the site of potential moderate-to-strong earthquakes. (4) The asperity along the segment between Huangmu town in Hanyuan county and Longchi town in Emeishan city on Jinkouhe-Meigu fault has potential for a moderate-strong earthquake.展开更多
With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the dir...With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the direct wave amplitude ratio of S /P in the vertical component and their characteristics were analyzed. According to regional tectonic features of the middle section of the Xiaojiang fault and its adjacent area,the study region was partitioned into two zones with the Xiaojiang fault as the boundary,e. g. zone A and zone B (including the Xiaojiang fault). In order to research the faults stress in detail,the Xiaojiang fault zone was picked out for independent analysis. The study region was also partitioned into 1°× 1° cells with a 0. 5° step. The stress fields of zone A,B and the fault zone were inverted with the FMSI method (Gephart,1990). The results show that first, the faults are mainly of strike-slip in the middle section and its adjacent area,amounting to 81. 28%,69. 23% and 72. 97% in the A,B and fault zones,respectively. Secondly,the stress inversion also indicates that the directions of maximum principal stress σ1 in the A, B,and fault zones are approximately NNW,NWW and NWW,the stress action is mainly horizontal,and strike-slip faulting is dominant in the study area. On the other hand,the direction of the principal stress field in the central Yunnan block changed from NNW to NWW,however,in the region between the Yuanmou and Pudu River faults,the azimuth of the main compressive stress shows that the north-south slip is obvious. While the direction of the main compressive stress of the Xiaojiang fault zone is nearly NW; in the east of the Xiaojiang fault,the direction of principal compressive stress is NW to NNW in the eastern Yunnan block.展开更多
Using broadband seismic records from regional networks, we determined the focal mechanisms and depths of 37 earthquakes in the 2013 M7.0 Lushan earthquake sequence(3.4≤Mw≤5.1) by fitting the three-component waveform...Using broadband seismic records from regional networks, we determined the focal mechanisms and depths of 37 earthquakes in the 2013 M7.0 Lushan earthquake sequence(3.4≤Mw≤5.1) by fitting the three-component waveform data. The results show that the earthquakes are predominantly thrust events, with occasional strike-slip mechanisms. Most earthquakes occurred at depths of 10–20 km. We derived the regional distribution of the average stress field in this area using the damped linear inversion method and the focal mechanisms obtained in this study. The inversion results suggest that the Lushan region and the adjacent area are mostly under compression. The orientations of the maximum principal axes trend NW-SE, with some local differences in the stress distribution at different depths. Compared with the distribution of the stress field in the Wenchuan earthquake area, the stress field in the southwest section of the Longmenshan Fault zone(LFZ) share similar characteristics, predominantly thrust faulting with a few strike-slip events and the maximum compression axes being perpendicular to the LFZ.展开更多
基金This research is supported by the National Key Basic Research 973 Project(Grant No.:2008CB425701)the Special Project M7.0~8.0 of China Earthquake Administration
文摘Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for potential future. The method of analysis is a combination of activity background of historical strong earthquakes mainly show ~ ( 1 ) The spatial distribution of b-values strong and large earthquakes in the spatial distribution of b-values with and current seismicity. Our results indicates significant heterogeneity in the studied area, which reflects the spatial difference of cumulative stress levels along various fault zones and segments. (2) Three anomalously low b-value areas with different dimensions were identified along the Mabian-Yanjin fault zone. These anomalies can be asperities under relatively high cumulated stress levels. Two asperities are located in the north of Mabian county, in Lidian town in western Muchuan county, and near Yanjin at the south end of the fault zone. These two areas represent potential large earthquake seismogenic sites around the Mabian area in the near future. Besides them, the third relatively smaller asperity is identified at southern Suijiang, as another potential strong- earthquake source. (3) An asperity along the southwestern segment of the Longquanshan fault zone indicates the site of potential moderate-to-strong earthquakes. (4) The asperity along the segment between Huangmu town in Hanyuan county and Longchi town in Emeishan city on Jinkouhe-Meigu fault has potential for a moderate-strong earthquake.
基金sponsored by the National Key Technology R&D Program (2006BAC1B03-03-01),Chinathe Joint Earthquake Science Foundation(A07058),China
文摘With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the direct wave amplitude ratio of S /P in the vertical component and their characteristics were analyzed. According to regional tectonic features of the middle section of the Xiaojiang fault and its adjacent area,the study region was partitioned into two zones with the Xiaojiang fault as the boundary,e. g. zone A and zone B (including the Xiaojiang fault). In order to research the faults stress in detail,the Xiaojiang fault zone was picked out for independent analysis. The study region was also partitioned into 1°× 1° cells with a 0. 5° step. The stress fields of zone A,B and the fault zone were inverted with the FMSI method (Gephart,1990). The results show that first, the faults are mainly of strike-slip in the middle section and its adjacent area,amounting to 81. 28%,69. 23% and 72. 97% in the A,B and fault zones,respectively. Secondly,the stress inversion also indicates that the directions of maximum principal stress σ1 in the A, B,and fault zones are approximately NNW,NWW and NWW,the stress action is mainly horizontal,and strike-slip faulting is dominant in the study area. On the other hand,the direction of the principal stress field in the central Yunnan block changed from NNW to NWW,however,in the region between the Yuanmou and Pudu River faults,the azimuth of the main compressive stress shows that the north-south slip is obvious. While the direction of the main compressive stress of the Xiaojiang fault zone is nearly NW; in the east of the Xiaojiang fault,the direction of principal compressive stress is NW to NNW in the eastern Yunnan block.
基金supported by the National Natural Science Foundation of China(Grant No.41104032)the Special Project Seismic Commonwealth Research(Grant No.201308013)
文摘Using broadband seismic records from regional networks, we determined the focal mechanisms and depths of 37 earthquakes in the 2013 M7.0 Lushan earthquake sequence(3.4≤Mw≤5.1) by fitting the three-component waveform data. The results show that the earthquakes are predominantly thrust events, with occasional strike-slip mechanisms. Most earthquakes occurred at depths of 10–20 km. We derived the regional distribution of the average stress field in this area using the damped linear inversion method and the focal mechanisms obtained in this study. The inversion results suggest that the Lushan region and the adjacent area are mostly under compression. The orientations of the maximum principal axes trend NW-SE, with some local differences in the stress distribution at different depths. Compared with the distribution of the stress field in the Wenchuan earthquake area, the stress field in the southwest section of the Longmenshan Fault zone(LFZ) share similar characteristics, predominantly thrust faulting with a few strike-slip events and the maximum compression axes being perpendicular to the LFZ.