The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plast...The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion.展开更多
Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of noneq...Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.展开更多
Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the curren...Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Reinforcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the unbalanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor (SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the external loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock specimens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation when performing 3-dimensional nonlinear FEM calculation.展开更多
文摘The brittle fracture probability and reliability are obtained in terms of dislocation mechanism of microcrack evolution. The statistical distribution functions and statistical deviations of elongation, strength, plastic work, crack extension force, fracture foughness, critical and crack length, can be derived in a unified fashion.
文摘Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.
基金supported by the National Natural Science Foundation of China (Grant No. 50709014)China National Funds for Distinguished Young Scientists (Grant No. 50925931)State Key Laboratory of Hydroscience and Engineering of China (Grant No. 2008-TC-2)
文摘Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Reinforcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the unbalanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor (SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the external loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock specimens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation when performing 3-dimensional nonlinear FEM calculation.