Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture beha...Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.展开更多
Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the curren...Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Reinforcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the unbalanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor (SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the external loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock specimens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation when performing 3-dimensional nonlinear FEM calculation.展开更多
文摘Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.
基金supported by the National Natural Science Foundation of China (Grant No. 50709014)China National Funds for Distinguished Young Scientists (Grant No. 50925931)State Key Laboratory of Hydroscience and Engineering of China (Grant No. 2008-TC-2)
文摘Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Reinforcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the unbalanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor (SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the external loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock specimens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation when performing 3-dimensional nonlinear FEM calculation.