Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment...Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment are described. They are based on relationships between earthquake magnitude, rupture length and displacement, and on the detailed field data on a specific fault that crosses the pipeline route. Since the future offset at the crossing may exceed the design value, the probability of a displacement occurrence where the safety of the structure can not be ensured should be estimated. Assessment method on such event probability is described and exemplified through active fault studies carried out at several pipeline projects in Russia.展开更多
文摘Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment are described. They are based on relationships between earthquake magnitude, rupture length and displacement, and on the detailed field data on a specific fault that crosses the pipeline route. Since the future offset at the crossing may exceed the design value, the probability of a displacement occurrence where the safety of the structure can not be ensured should be estimated. Assessment method on such event probability is described and exemplified through active fault studies carried out at several pipeline projects in Russia.