AIM:To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy(DPOC).METHODS:Consecutive patients referred for diagnostic or therapeutic peroral...AIM:To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy(DPOC).METHODS:Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study.The patients underwent DPOC using an intraductal anchoring balloon,which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope.The device was later voluntarily withdrawn from the market by the manufacturer.RESULTS:Fourteen patients underwent DPOC using the anchoring balloon.Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients.In 12(86%) patients,ductal access required sphincteroplasty with a 10-mm dilating balloon.Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients(93%).Therapeutic interventions by DPOC were successfully completed in all five attempted cases(intraductal biopsy in one and DPOC guided laser lithotripsy in four).Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon.This required hospitalization and antibiotics.Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma.CONCLUSION:Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation.展开更多
Given the fact that FRP bolts for roadway support are often under a certain amount of eccentric load,we studied the problems of failure of FRP bolt-ends using mechanical analysis,numerical simulation and a laboratory ...Given the fact that FRP bolts for roadway support are often under a certain amount of eccentric load,we studied the problems of failure of FRP bolt-ends using mechanical analysis,numerical simulation and a laboratory experiment to reveal the FRP bolt-end failure mechanism.The results show that bolt-end stress increases rapidly,making the maximum stress under an eccentric load to be 5 to 7 times greater than that under a normal load,resulting first in the formation of some fractures at the bolt-end,which then spreads to the entire cross-section of the bolt.展开更多
With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce suppor...With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.展开更多
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con...In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
文摘AIM:To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy(DPOC).METHODS:Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study.The patients underwent DPOC using an intraductal anchoring balloon,which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope.The device was later voluntarily withdrawn from the market by the manufacturer.RESULTS:Fourteen patients underwent DPOC using the anchoring balloon.Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients.In 12(86%) patients,ductal access required sphincteroplasty with a 10-mm dilating balloon.Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients(93%).Therapeutic interventions by DPOC were successfully completed in all five attempted cases(intraductal biopsy in one and DPOC guided laser lithotripsy in four).Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon.This required hospitalization and antibiotics.Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma.CONCLUSION:Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation.
基金Project 08040106839 supported by the Excellent Youth Foundation of Anhui Province
文摘Given the fact that FRP bolts for roadway support are often under a certain amount of eccentric load,we studied the problems of failure of FRP bolt-ends using mechanical analysis,numerical simulation and a laboratory experiment to reveal the FRP bolt-end failure mechanism.The results show that bolt-end stress increases rapidly,making the maximum stress under an eccentric load to be 5 to 7 times greater than that under a normal load,resulting first in the formation of some fractures at the bolt-end,which then spreads to the entire cross-section of the bolt.
基金Supported by the National Natural Science Foundation of China (50074030) and Dr. Special fund of the Ministry of Education (20030290017)
文摘With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.
文摘In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.