期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
关于Stein流形上微分形式B-M-K变换的跳跃公式
1
作者 钟同德 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1993年第5期525-527,共3页
给出Stein流形上微分形式B-M-K变换的跳跃公式的一个证明。
关键词 微分形式 斯坦因流形 B-M-K变换
下载PDF
Stein流形上(p,q)-形式带权因子的积分表示 被引量:3
2
作者 王志强 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1994年第2期151-154,共4页
在边界的不同光滑段上采用不向的Leray截面,构造了stein流形上(p,q)-形式带权因子的积分表示的Koppelman-Leray-Norguet公式;当取定特殊权因子,就得到Stein流形上积分表示的Koppe... 在边界的不同光滑段上采用不向的Leray截面,构造了stein流形上(p,q)-形式带权因子的积分表示的Koppelman-Leray-Norguet公式;当取定特殊权因子,就得到Stein流形上积分表示的Koppelman-Leray-Norguet公式。 展开更多
关键词 斯坦因流形 带权因子 积分表示
下载PDF
Plemelj公式及其应用 被引量:5
3
作者 钟同德 《数学进展》 CSCD 北大核心 1994年第3期205-211,共7页
本文介绍了C ̄n空间中函数经Bochner-Martinelli变换后的Plemelj公式和它在Stein流形上的拓广,同时还介绍了C ̄n空间和Stein流形上微分形式在Bochner-Martinelli变换下的跳... 本文介绍了C ̄n空间中函数经Bochner-Martinelli变换后的Plemelj公式和它在Stein流形上的拓广,同时还介绍了C ̄n空间和Stein流形上微分形式在Bochner-Martinelli变换下的跳跃公式以及这些公式分别在全纯开拓,闭开拓,方程和线性奇异积分方程上的应用. 展开更多
关键词 PLEMELJ公式 B-M核 斯坦因流形
下载PDF
Quasi- Einstein Hypersurfaces in a Hyperbolic Space 被引量:1
4
作者 赵培标 宋鸿藻 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第2期49-52, ,共4页
In this paper,we consider quasi Einstein hypersurfaces in a hyperbolic space. The following theorem is obtained. Theorem Quasi Einstein hypersurfaces of a hyperbolic space are of constant curvature,where the dimension... In this paper,we consider quasi Einstein hypersurfaces in a hyperbolic space. The following theorem is obtained. Theorem Quasi Einstein hypersurfaces of a hyperbolic space are of constant curvature,where the dimension is large enough. 展开更多
关键词 quasi Einstein hypersurface hyperbolic space totally umbilic hypersurface
下载PDF
Rigidity Theorems of Riemannian Manifold with 2Ric=0
5
作者 徐森林 梅加强 《Journal of Mathematical Research and Exposition》 CSCD 1998年第1期1-10,共10页
Ricci curvature tensor is denoted by Ric. We study when the manifold which satisfy 2Ric=0 become a Einstein manifold or a space form.
关键词 Ricci curvature tensor Riemann curvature tensor Einstein space weyl conformal curvature tensor scalar curvature.
下载PDF
On Ricci tensor of focal submanifolds of isoparametric hypersurfaces 被引量:3
6
作者 LI QiChao YAN WenJiao 《Science China Mathematics》 SCIE CSCD 2015年第8期1723-1736,共14页
A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold an... A-manifolds and/3-manifolds, introduced by Gray (1978), are two significant classes of Einstein-like Riemannian manifolds. A Riemannian manifold is Ricci parallel if and only if it is simultaneously an A-manifold and a B-manifold. The present paper proves that both focal submanifolds of each isoparametric hypersurface in unit spheres with g = 4 distinct principal curvatures are A-manifolds. As for the focal submanifolds with g = 6, m = 1 or 2, only one is an A-manifold, and neither is a B-manifold. 展开更多
关键词 isoparametric hypersurface focal submanifold .A-manifold N-manifold
原文传递
Homogeneous manifolds admitting non-Riemannian Einstein-Randers metrics 被引量:3
7
作者 CHEN ZhiQi DENG ShaoQiang LIANG Ke 《Science China Mathematics》 SCIE CSCD 2015年第7期1473-1482,共10页
In this paper, we find some new homogeneous manifolds G/H admitting non-Riemannian EinsteinRanders metrics when G is the compact simple Lie group E6, or E7 or E8. In the beginning, we prove that these homogeneous mani... In this paper, we find some new homogeneous manifolds G/H admitting non-Riemannian EinsteinRanders metrics when G is the compact simple Lie group E6, or E7 or E8. In the beginning, we prove that these homogeneous manifolds admit Riemannian Einstein metrics. Based on these metrics, we obtain non-Riemannian Einstein Randers metrics on them. 展开更多
关键词 Einstein metrics Randers metrics homogeneous manifolds
原文传递
Einstein Finsler metrics and Killing vector fields on Riemannian manifolds 被引量:2
8
作者 CHENG XinYue SHEN ZhongMin 《Science China Mathematics》 SCIE CSCD 2017年第1期83-98,共16页
We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics o... We use a Killing form on a Riemannian manifold to construct a class of Finsler metrics. We find equations that characterize Einstein metrics among this class. In particular, we construct a family of Einstein metrics on S^3 with Ric = 2F^2, Ric = 0 and Ric =-2F^2, respectively. This family of metrics provides an important class of Finsler metrics in dimension three, whose Ricci curvature is a constant, but the flag curvature is not. 展开更多
关键词 Killing vector field Finsler metric (α β)-metric Ricci curvature Einstein metric Ricci-flat metric
原文传递
Splitting submanifolds of families of fake elliptic curves
9
作者 JAHNKE Priska RADLOFF Ivo 《Science China Mathematics》 SCIE 2011年第5期949-958,共10页
Let N be a compact complex submanifold of a compact complex manifold M. We say that Nsplits in M, if the holomorphic tangent bundle sequence splits holomorphically. By a result of Mok, a splittingsubmanifold of a Khle... Let N be a compact complex submanifold of a compact complex manifold M. We say that Nsplits in M, if the holomorphic tangent bundle sequence splits holomorphically. By a result of Mok, a splittingsubmanifold of a Khler-Einstein manifold with a projective structure is totally geodesic. The classification ofall splitting submanifolds of families of fake elliptic curves given here completes the case of threefolds M with aprojective structure by a previous result of the authors. 展开更多
关键词 SUBMANIFOLDS projective connections variation of Hodge structures THREEFOLDS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部