A dish/stifling solar thermal electricity system consists of two parts: a dish solar concentrator and a Stifling engine. For optimizing the system, in this paper, the mathematical model for concentrator design was es...A dish/stifling solar thermal electricity system consists of two parts: a dish solar concentrator and a Stifling engine. For optimizing the system, in this paper, the mathematical model for concentrator design was established and the effects of those design parameters of concentrator, such as the size and intensity of the focal point, the receiver temperature, on the efficiency of the Stifling engine and output power were numerically simulated. The results of the simulation revealed a close relationship between power and efficiency because of power losses, and there was a maximum for the engine efficiency and power with increasing solar radiation because there was a peak value of system efficiency with increasing receiver temperature. So, in view of our Stifling engine, the 450 rim angle and 6m focal length are optimal design for concentrator and the 800℃receiver temperature is best.展开更多
文摘A dish/stifling solar thermal electricity system consists of two parts: a dish solar concentrator and a Stifling engine. For optimizing the system, in this paper, the mathematical model for concentrator design was established and the effects of those design parameters of concentrator, such as the size and intensity of the focal point, the receiver temperature, on the efficiency of the Stifling engine and output power were numerically simulated. The results of the simulation revealed a close relationship between power and efficiency because of power losses, and there was a maximum for the engine efficiency and power with increasing solar radiation because there was a peak value of system efficiency with increasing receiver temperature. So, in view of our Stifling engine, the 450 rim angle and 6m focal length are optimal design for concentrator and the 800℃receiver temperature is best.