This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv +(?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is...This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv +(?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is proved bymaking use of the property of Frechet derivative operator and fixed point theorem. For thesake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can bedealt with in a similar way with more complicated calculation.展开更多
文摘This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv +(?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is proved bymaking use of the property of Frechet derivative operator and fixed point theorem. For thesake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can bedealt with in a similar way with more complicated calculation.