Because Aulacus erythrogaster He et Chen 2002 is preoccupied by Aulacus erythrogaster Kieffer 1904, authors propose a new name Aulacus sinensis He and Chen as replacement name for A. erythrogaster He et Chen.
The surface uplift history of the Tibetan Plateau has provided a key boundary criterion for various geological, climatic,and environmental events since the Cenozoic. The paleoelevation history of the plateau is organi...The surface uplift history of the Tibetan Plateau has provided a key boundary criterion for various geological, climatic,and environmental events since the Cenozoic. The paleoelevation history of the plateau is organically associated with interactions amongst deep geodynamics, earth surface processes, and climate change. Understanding of plateau uplift history has been advanced by the development of a number of paleoaltimetries and their application to studies of the Tibetan Plateau: the paleogeomorphic scenario for the Early Eocene Tibetan Plateau is thought to include two high mountains, the ca. 4500 m Gangdese Mountains to the south, and the ca. 5000 m Qiangtang Center Watershed Mountains to the north. Between these ranges, a low-elevation basin(ca. 2500 m) is thought to have been present. The Himalayas in the southern Tibetan Plateau was close to sea level at this time,while the Hoh Xil Basin in the north reached an elevation of no more than 1500 m. Thus, the so-called "Roof of the World" Tibetan Plateau formed subsequent to the Miocene. Nevertheless,, the uplift histories of the different terranes that comprise this plateau currently remain unclear, which constrains the uplift history reconstruction of the entire Tibetan Plateau. Additional paleoelevation data from different areas, obtained using multi-paleoaltimeters, is required to resolve the forms and processes of Tibetan Plateau uplift and extension.展开更多
文摘Because Aulacus erythrogaster He et Chen 2002 is preoccupied by Aulacus erythrogaster Kieffer 1904, authors propose a new name Aulacus sinensis He and Chen as replacement name for A. erythrogaster He et Chen.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41472207 & 41490615)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03010401)
文摘The surface uplift history of the Tibetan Plateau has provided a key boundary criterion for various geological, climatic,and environmental events since the Cenozoic. The paleoelevation history of the plateau is organically associated with interactions amongst deep geodynamics, earth surface processes, and climate change. Understanding of plateau uplift history has been advanced by the development of a number of paleoaltimetries and their application to studies of the Tibetan Plateau: the paleogeomorphic scenario for the Early Eocene Tibetan Plateau is thought to include two high mountains, the ca. 4500 m Gangdese Mountains to the south, and the ca. 5000 m Qiangtang Center Watershed Mountains to the north. Between these ranges, a low-elevation basin(ca. 2500 m) is thought to have been present. The Himalayas in the southern Tibetan Plateau was close to sea level at this time,while the Hoh Xil Basin in the north reached an elevation of no more than 1500 m. Thus, the so-called "Roof of the World" Tibetan Plateau formed subsequent to the Miocene. Nevertheless,, the uplift histories of the different terranes that comprise this plateau currently remain unclear, which constrains the uplift history reconstruction of the entire Tibetan Plateau. Additional paleoelevation data from different areas, obtained using multi-paleoaltimeters, is required to resolve the forms and processes of Tibetan Plateau uplift and extension.