To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled f...To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.展开更多
The combination of fiber optics with nano-structure technologies and sensitive thin films offers great potential for the realization of novel sensor concepts. Miniatured optical fiber sensors with thin films as sensit...The combination of fiber optics with nano-structure technologies and sensitive thin films offers great potential for the realization of novel sensor concepts. Miniatured optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and transducer to get response and feedback from environments, in which optical fibers are employed to work as signal carrier. This article presents some research work conducted at the National Engineering Laboratory for Optical Fiber Sensing Technologies in recent years. Concrete examples are: Pd/WO3 co-sputtered coating as sensing material for optical hydrogen sensors shows robust mechanical stability and meanwhile good sensing performance; TbDyFe magnetostrictive coating directly deposited on fiber Bragg grating (FBG) demonstrates its possibility of miniature optical magnetic field/current sensors, and 40-pm shift of the FBG wavelength happens at a magnetic field order of 50 mT.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.41076032, 40776030)the Special Program 908 on investigation and research of the environment under the sea (No. 908-01-CJ03)
文摘To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.
基金This work is finically supported by the Project of National Science Foundation of China (NSFC) (Grant No. 50830203, 60908020), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Program for New Century Excellent Talents in University (NCET- 10-0664).
文摘The combination of fiber optics with nano-structure technologies and sensitive thin films offers great potential for the realization of novel sensor concepts. Miniatured optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and transducer to get response and feedback from environments, in which optical fibers are employed to work as signal carrier. This article presents some research work conducted at the National Engineering Laboratory for Optical Fiber Sensing Technologies in recent years. Concrete examples are: Pd/WO3 co-sputtered coating as sensing material for optical hydrogen sensors shows robust mechanical stability and meanwhile good sensing performance; TbDyFe magnetostrictive coating directly deposited on fiber Bragg grating (FBG) demonstrates its possibility of miniature optical magnetic field/current sensors, and 40-pm shift of the FBG wavelength happens at a magnetic field order of 50 mT.