By applying the empirical Green's function method, we first proved that the source spectra in the middle eastern area of North Tianshan follow the ω^-2 Brune model, and then, on this basis, obtained the source spect...By applying the empirical Green's function method, we first proved that the source spectra in the middle eastern area of North Tianshan follow the ω^-2 Brune model, and then, on this basis, obtained the source spectra for 105 earthquakes of ML 2.5 - 5.7 in the studied area upon removing the noise, instrument, propagation and site effects in the observational seismic S waveforms. Finally, we determined the source parameters such as the seismic moment, stress drop, source dimension, etc., based on the Brune model. The results show that there is a good linear correlation between scalar seismic moment, M0, and ML, which is Log10 M0 = 1.10 ML + 17.20; The source radii range between 100- 1500m; the stress drop, 1-16MPa with a predominant range of 1 - 10MPa. The relationship of the seismic moment versus corner frequencies indicates that there may exist two source scaling, that is, when M0 〈 4×10^21 dyne. cm (equal to an ML4.0 event), stress drop is weakly dependent on M0: whereas, when M0 〉 4×10^21 dyne·cm, stress drop is independent of M0.展开更多
文摘By applying the empirical Green's function method, we first proved that the source spectra in the middle eastern area of North Tianshan follow the ω^-2 Brune model, and then, on this basis, obtained the source spectra for 105 earthquakes of ML 2.5 - 5.7 in the studied area upon removing the noise, instrument, propagation and site effects in the observational seismic S waveforms. Finally, we determined the source parameters such as the seismic moment, stress drop, source dimension, etc., based on the Brune model. The results show that there is a good linear correlation between scalar seismic moment, M0, and ML, which is Log10 M0 = 1.10 ML + 17.20; The source radii range between 100- 1500m; the stress drop, 1-16MPa with a predominant range of 1 - 10MPa. The relationship of the seismic moment versus corner frequencies indicates that there may exist two source scaling, that is, when M0 〈 4×10^21 dyne. cm (equal to an ML4.0 event), stress drop is weakly dependent on M0: whereas, when M0 〉 4×10^21 dyne·cm, stress drop is independent of M0.