期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法
被引量:
2
1
作者
张硕
余世明
《高技术通讯》
CAS
2021年第11期1145-1153,共9页
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机...
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机器及医生诊断的问题,本文提出一种基于多尺度并行深度可拆分卷积神经网络(MSP-ReCNN),对新冠肺炎CT图像进行去噪处理,提升肺炎图像质量。多尺度特征提取模块从不同尺度提取肺炎图像中的纹理特征细节,采用深浅通道并行方式,分别提取肺炎图像中的高维度以及低维度的特征。为进一步优化网络模型,提出一种拆分卷积方式,可将特征图拆分为两类,一类为主要关注特征,另一类为次要关注特征。使用复杂度高的计算方式从主要关注特征中提取关键信息,对于次要关注特征,则采取复杂度低的计算方式提取补偿信息。通过与非局部均值(NLM)去噪算法、收缩卷积神经网络(SCNN)深度模型、去噪卷积神经网络(DnCNN)深度模型对比,以及网络消融实验,可以看出本文提出的模型能有效去除肺炎图像中的噪声,并且可以更好地保留原始图像中的纹理结构细节,为机器以及医生提供更可靠的辅助诊断。
展开更多
关键词
新
冠
肺炎
(
covid-
19
)
电子
计算机
断层扫描
(
ct
)
图像
图像
去噪
多尺度特征
深浅通道并行
拆分卷积
下载PDF
职称材料
CT图像肺及肺病变区域分割方法综述
被引量:
7
2
作者
冯龙锋
陈英
+2 位作者
周滔辉
胡菲
易珍
《中国图象图形学报》
CSCD
北大核心
2022年第3期722-749,共28页
计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算...
计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题。为了对肺CT图像的肺及肺病变区域分割方法的现状进行全面研究,本文综述了近年国内外发表的相关文献:对基于区域和活动轮廓的肺CT图像传统分割方法的优缺点进行比较与总结,传统的肺CT图像分割方法因其实现原理简单且分割速度快等优点,早期使用较多,但其存在分割精度不高的缺点,目前仍有不少基于传统方法的改进策略;重点分析了基于卷积神经网络(convolutional neural network,CNN)、全卷积网络(fully convolutional network,FCN)、U-Net和生成对抗网络(generative adversarial network,GAN)的肺CT图像分割网络结构改进模型的研究进展,基于深度学习的分割方法具有分割精度高、迁移学习能力强和鲁棒性高等优点,特别是在辅助诊断COVID-19病例时,基于深度学习方法的性能明显优于基于传统方法的性能;介绍肺及肺病变区域分割的常用数据集和评价指标,在解决如COVID-19数据样本量少等问题时,使用GAN以合成高质量的对抗性图像用以扩充数据集,从而增加训练样本的数量和多样性;讨论了肺CT图像的肺及肺病变区域的高精度分割策略的研究趋势、现有挑战和未来的研究方向。
展开更多
关键词
计算机
断层扫描
(
ct
)
医学
图像
分割
肺
ct
图像
分割
肺病变区域
深度学习
新
冠
肺炎
(
covid-
19
)
原文传递
题名
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法
被引量:
2
1
作者
张硕
余世明
机构
浙江工业大学信息工程学院
出处
《高技术通讯》
CAS
2021年第11期1145-1153,共9页
基金
国家自然科学基金(61772471)资助项目。
文摘
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机器及医生诊断的问题,本文提出一种基于多尺度并行深度可拆分卷积神经网络(MSP-ReCNN),对新冠肺炎CT图像进行去噪处理,提升肺炎图像质量。多尺度特征提取模块从不同尺度提取肺炎图像中的纹理特征细节,采用深浅通道并行方式,分别提取肺炎图像中的高维度以及低维度的特征。为进一步优化网络模型,提出一种拆分卷积方式,可将特征图拆分为两类,一类为主要关注特征,另一类为次要关注特征。使用复杂度高的计算方式从主要关注特征中提取关键信息,对于次要关注特征,则采取复杂度低的计算方式提取补偿信息。通过与非局部均值(NLM)去噪算法、收缩卷积神经网络(SCNN)深度模型、去噪卷积神经网络(DnCNN)深度模型对比,以及网络消融实验,可以看出本文提出的模型能有效去除肺炎图像中的噪声,并且可以更好地保留原始图像中的纹理结构细节,为机器以及医生提供更可靠的辅助诊断。
关键词
新
冠
肺炎
(
covid-
19
)
电子
计算机
断层扫描
(
ct
)
图像
图像
去噪
多尺度特征
深浅通道并行
拆分卷积
Keywords
coronavirus disease 20
19
(
covid-
19
)computed tomography(
ct
)image
image denoising
multi-scale feature
deep and shallow parallel channel
split convolution
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
R563.1 [医药卫生—呼吸系统]
R816.4 [医药卫生—放射医学]
下载PDF
职称材料
题名
CT图像肺及肺病变区域分割方法综述
被引量:
7
2
作者
冯龙锋
陈英
周滔辉
胡菲
易珍
机构
南昌航空大学软件学院
江西省肿瘤医院放射科
出处
《中国图象图形学报》
CSCD
北大核心
2022年第3期722-749,共28页
基金
江西省自然科学基金项目(20202BABL202029)
国家自然科学基金项目(61762067)。
文摘
计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题。为了对肺CT图像的肺及肺病变区域分割方法的现状进行全面研究,本文综述了近年国内外发表的相关文献:对基于区域和活动轮廓的肺CT图像传统分割方法的优缺点进行比较与总结,传统的肺CT图像分割方法因其实现原理简单且分割速度快等优点,早期使用较多,但其存在分割精度不高的缺点,目前仍有不少基于传统方法的改进策略;重点分析了基于卷积神经网络(convolutional neural network,CNN)、全卷积网络(fully convolutional network,FCN)、U-Net和生成对抗网络(generative adversarial network,GAN)的肺CT图像分割网络结构改进模型的研究进展,基于深度学习的分割方法具有分割精度高、迁移学习能力强和鲁棒性高等优点,特别是在辅助诊断COVID-19病例时,基于深度学习方法的性能明显优于基于传统方法的性能;介绍肺及肺病变区域分割的常用数据集和评价指标,在解决如COVID-19数据样本量少等问题时,使用GAN以合成高质量的对抗性图像用以扩充数据集,从而增加训练样本的数量和多样性;讨论了肺CT图像的肺及肺病变区域的高精度分割策略的研究趋势、现有挑战和未来的研究方向。
关键词
计算机
断层扫描
(
ct
)
医学
图像
分割
肺
ct
图像
分割
肺病变区域
深度学习
新
冠
肺炎
(
covid-
19
)
Keywords
computed tomography(
ct
)
medical image segmentation
lung
ct
image segmentation
lung lesion region
deep learning
corona virus disease 20
19
(
covid-
19
)
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法
张硕
余世明
《高技术通讯》
CAS
2021
2
下载PDF
职称材料
2
CT图像肺及肺病变区域分割方法综述
冯龙锋
陈英
周滔辉
胡菲
易珍
《中国图象图形学报》
CSCD
北大核心
2022
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部