期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于分类的微博新情感词抽取方法和特征分析 被引量:19
1
作者 刘德喜 聂建云 +5 位作者 万常选 刘喜平 廖述梅 廖国琼 钟敏娟 江腾蛟 《计算机学报》 EI CSCD 北大核心 2018年第7期1574-1597,共24页
情感或情绪分析在舆情分析、商品评论分析、商品推荐等领域应用广泛,而文本中的情感或情绪分析通常以情感词典为基础.人工情感词典虽然准确但构建代价大、难以及时更新,很难适应微博这类新情感词快速更迭的数据.微博平台为新情感词的发... 情感或情绪分析在舆情分析、商品评论分析、商品推荐等领域应用广泛,而文本中的情感或情绪分析通常以情感词典为基础.人工情感词典虽然准确但构建代价大、难以及时更新,很难适应微博这类新情感词快速更迭的数据.微博平台为新情感词的发布和传播提供了便捷的途径,是新情感词的重要来源.考虑到已有规模较大的人工情感词典及大量包含新情感词的微博数据,在统计、分析、对比中、英两种语言微博中情感词分布差异的基础上,提出了与特定语言无关的基于分类思想的微博新情感词抽取方法cNSEm.cNSEm根据微博数据集和情感词典自动构建训练数据、训练分类器并判别候选词的情感极性,最后采用投票机制确定候选词的情感极性.通过大量而细致的实验,分析了cNSEm在中、英文两种语言的微博数据上的表现、六类特征的作用和用法以及抽取的新情感词对微博情感分类任务的帮助作用.实验结果表明,cNSEm比经典的基于共现和极性传播的方法要好,特别是当考虑中文微博数据集中的名词类情感词时.对cNSEm抽取的新情感词进行了直接和间接两种方法评测,前者利用人工情感词典作参照,后者考察抽取的新情感词对情感分类的帮助作用,从评测指标上看,cNSEm抽取的新情感词与人工情感词典的质量相当,并且cNSEm能适应有较大差异的中、英两个语种. 展开更多
关键词 微博 新情感词抽取 cNSEm方法 特征分析
下载PDF
基于改进互信息的微博新情感词提取 被引量:2
2
作者 柳文婷 《延边大学学报(自然科学版)》 CAS 2019年第4期349-355,共7页
针对微博新词的情感倾向分析问题,提出了一种改进互信息的微博新情感词提取方法.首先,对预处理后的微博数据进行N元切分,以此得到候选字串;然后,通过计算多字互信息(multiword mutual information,MMI)和左右侧邻接熵对候选字串进行扩... 针对微博新词的情感倾向分析问题,提出了一种改进互信息的微博新情感词提取方法.首先,对预处理后的微博数据进行N元切分,以此得到候选字串;然后,通过计算多字互信息(multiword mutual information,MMI)和左右侧邻接熵对候选字串进行扩展和过滤得到候选新词,再将候选新词与相应词典进行对比得到新词;最后,通过词间情感相似度(sentiment similarity between the words,SW)计算出新词的情感倾向值,从而得到新情感词.实验结果显示,该方法对新词情感倾向识别的准确率、召回率和F1值比文献[4]方法分别提高了13.14%、5.81%和8.59%,因此该方法具有很好的应用价值. 展开更多
关键词 微博 新情感词 N元切分 多字互信息 情感相似度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部