Animal models are essential for the development of new anti-infectious drugs.Although some bacterial infection models have been established in rodents,small primate models are rare.Here,we report on two bacterial infe...Animal models are essential for the development of new anti-infectious drugs.Although some bacterial infection models have been established in rodents,small primate models are rare.Here,we report on two bacterial infection models established in tree shrew(Tupaia belangeri chinensis).A burnt skin infection model was induced by dropping 5×106 CFU of Staphylococcus aureus on the surface of a wound after a third degree burn.This dose of S.aureus caused persistent infection for 7 days and obvious inflammatory response was observed 4 days after inoculation.A Dacron graft infection model,2×106 CFU of Pseudomonas aeruginosa also caused persistent infection for 6 days,with large amounts of pus observed 3 days after inoculation.These models were used to evaluate the efficacy of levofloxacin(LEV) and cefoperazone(CPZ),which reduced the viable bacteria in skin to 4log10 and 5log10 CFU/100 mg tissue,respectively.The number of bacteria in graft was significantly reduced by 4log10 CFU/mL treatment compared to the untreated group(P0.05).These results suggest that two bacterial infection models were successfully established in tree shrew using P.aeruginosa and S.aureus.In addition,tree shrew was susceptible to P.aeruginosa and S.aureus,thus making it an ideal bacterial infection animal model for the evaluation of new antimicrobials.展开更多
The development of biomedicine has offered new prospects for clinical tissue transplantation. In researching tissue engineering products, the key issue is the construction of micro-circulation network and effective in...The development of biomedicine has offered new prospects for clinical tissue transplantation. In researching tissue engineering products, the key issue is the construction of micro-circulation network and effective induction of angiogenesis is the current continuous explore direction. Revascularization strategy currently focuses on angiogenesis and angiogenesis, but with the advent of microscopic engineering technology, direct construction of artificial micro-circulation pipe has been a new way of thinking.展开更多
基金financially supported by the Project from the Chinese Academy of Sciences (KSCX2-EW-R-11)the Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences&Yunnan Province (KSCX2-EW-J-23)Science and Technology Department of Yunnan Province (2011C1139)
文摘Animal models are essential for the development of new anti-infectious drugs.Although some bacterial infection models have been established in rodents,small primate models are rare.Here,we report on two bacterial infection models established in tree shrew(Tupaia belangeri chinensis).A burnt skin infection model was induced by dropping 5×106 CFU of Staphylococcus aureus on the surface of a wound after a third degree burn.This dose of S.aureus caused persistent infection for 7 days and obvious inflammatory response was observed 4 days after inoculation.A Dacron graft infection model,2×106 CFU of Pseudomonas aeruginosa also caused persistent infection for 6 days,with large amounts of pus observed 3 days after inoculation.These models were used to evaluate the efficacy of levofloxacin(LEV) and cefoperazone(CPZ),which reduced the viable bacteria in skin to 4log10 and 5log10 CFU/100 mg tissue,respectively.The number of bacteria in graft was significantly reduced by 4log10 CFU/mL treatment compared to the untreated group(P0.05).These results suggest that two bacterial infection models were successfully established in tree shrew using P.aeruginosa and S.aureus.In addition,tree shrew was susceptible to P.aeruginosa and S.aureus,thus making it an ideal bacterial infection animal model for the evaluation of new antimicrobials.
文摘The development of biomedicine has offered new prospects for clinical tissue transplantation. In researching tissue engineering products, the key issue is the construction of micro-circulation network and effective induction of angiogenesis is the current continuous explore direction. Revascularization strategy currently focuses on angiogenesis and angiogenesis, but with the advent of microscopic engineering technology, direct construction of artificial micro-circulation pipe has been a new way of thinking.