大规模的海洋工程建设会对周边海域的水动力产生不同程度的改变,基于MIKE21Flow Model FM模型研究了张家埠新港建设对附近海域水动力环境的影响。结果表明:新港建设对潮位的影响很小,仅仅局限在工程附近的有限区域;工程建设对附近海域...大规模的海洋工程建设会对周边海域的水动力产生不同程度的改变,基于MIKE21Flow Model FM模型研究了张家埠新港建设对附近海域水动力环境的影响。结果表明:新港建设对潮位的影响很小,仅仅局限在工程附近的有限区域;工程建设对附近海域流场有一定的影响,工程东西两侧海域流速减小、南侧海域流速增大,流速变化在-0.55~0.24m/s之间,流向变化在-10°~50°之间,在距离工程4 000m外影响程度较小。展开更多
Some new innovative constructions and piling technologies for improvement of offshore and port berthing structures are worked out and discussed. The aims of innovations are to decrease required power of construction ...Some new innovative constructions and piling technologies for improvement of offshore and port berthing structures are worked out and discussed. The aims of innovations are to decrease required power of construction (in particular, piling) equipment and, correspondingly, to improve environmental situation at the construction site. Another achieved goal is providing long tubular piles installation in hard soils conditions without application of very heavy and powerful driving machines. Worked out solutions are based on two approaches. One of them provides separate loading of driving force on pile's shaft and pile's tip concentrating the whole driving force on one of the mentioned parts of the pile. Another approach is focused on prevention of soil plug formation inside of the tubular pile tip facilitating the pile installation process. Also improved anchorage system for sheet piling seafront walls is presented and discussed. All considered innovations are patented and can be used in wide range of marine, offshore, coastal and harbor structures.展开更多
文摘大规模的海洋工程建设会对周边海域的水动力产生不同程度的改变,基于MIKE21Flow Model FM模型研究了张家埠新港建设对附近海域水动力环境的影响。结果表明:新港建设对潮位的影响很小,仅仅局限在工程附近的有限区域;工程建设对附近海域流场有一定的影响,工程东西两侧海域流速减小、南侧海域流速增大,流速变化在-0.55~0.24m/s之间,流向变化在-10°~50°之间,在距离工程4 000m外影响程度较小。
文摘Some new innovative constructions and piling technologies for improvement of offshore and port berthing structures are worked out and discussed. The aims of innovations are to decrease required power of construction (in particular, piling) equipment and, correspondingly, to improve environmental situation at the construction site. Another achieved goal is providing long tubular piles installation in hard soils conditions without application of very heavy and powerful driving machines. Worked out solutions are based on two approaches. One of them provides separate loading of driving force on pile's shaft and pile's tip concentrating the whole driving force on one of the mentioned parts of the pile. Another approach is focused on prevention of soil plug formation inside of the tubular pile tip facilitating the pile installation process. Also improved anchorage system for sheet piling seafront walls is presented and discussed. All considered innovations are patented and can be used in wide range of marine, offshore, coastal and harbor structures.