Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of comb...Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of combinatorial biosynthesis provides the possibility to produce "unnatural" natural drugs, which has achieved initial success. This paper provides an overview for the strategies of combinatorial biosynthesis in producing the structural and functional diversity of polyketides, including the redesign of metabolic flow, polyketide synthase(PKS) engineering, and PKS post-translational modification. Although encouraging progress has been made in the last decade, challenges still exist regarding the rational combinatorial biosynthesis of polyketides. In this review, the perspectives of polyketide combinatorial biosynthesis are also discussed.展开更多
基金supported by the Major Research Plan of Tianjin(No.16YFXTSF00460)
文摘Polyketides have been widely used clinically due to their significant biological activities, but the needed structural and functional diversity cannot be achieved by common chemical synthetic methods. The tool of combinatorial biosynthesis provides the possibility to produce "unnatural" natural drugs, which has achieved initial success. This paper provides an overview for the strategies of combinatorial biosynthesis in producing the structural and functional diversity of polyketides, including the redesign of metabolic flow, polyketide synthase(PKS) engineering, and PKS post-translational modification. Although encouraging progress has been made in the last decade, challenges still exist regarding the rational combinatorial biosynthesis of polyketides. In this review, the perspectives of polyketide combinatorial biosynthesis are also discussed.