The Drake Passage is the seaway between South America and Antarctica. It is widely believed that the thermal isolation effects caused by the opening of the Drake Passage played an important role in the abrupt cooling ...The Drake Passage is the seaway between South America and Antarctica. It is widely believed that the thermal isolation effects caused by the opening of the Drake Passage played an important role in the abrupt cooling that occurred at the Eocene-Oligocene boundary in the Cenozoic. These effects are also thought to be independent of the geometry of the passage. Here, the authors demonstrate that the climate impacts of the Drake Passage depend on the passage geometry by comparing the climate's sensitivity to the opening of the Drake Passage under the present and the Early Eocene land-sea configurations. These experiments show that the thermal isolation effects caused by the passage are much stronger under the present land-sea configuration. In comparison, under the Early Eocene land-sea configuration, the weak anomalies in heat transport caused by the opening of the narrow and shallow Drake Passage are not strong enough to thermally insulate Antarctica. The climate effects of the Drake Passage on the Cenozoic cooling have been overestimated in previous sensitivity studies carried out using the present land-sea configuration. Thus, it is unlikely that the opening of the Drake Passage played an essential role in the abrupt Cenozoic cooling, especially in the abrupt cooling at the Eocene-Oligocene boundary.展开更多
Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for th...Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for the evolution of East Asian climate during late Cenozoic have long been investigated and debated,particularly with regards to the role played by the Qinghai-Tibetan Plateau uplift and the global cooling.In this paper,we reviewed major research developments in this area,and summarized the important results.Based on a synthesis of data,we propose that the Qinghai-Tibetan Plateau uplift alone cannot fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22–25 Ma.Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role.Moreover,atmospheric CO2changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone(ITCZ),which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic.The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies.It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects.These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.展开更多
基金supported by the National Natural Science Foundation of China under Grant 40902054the Earth System Model Modeling project supported by Statoil, Norway
文摘The Drake Passage is the seaway between South America and Antarctica. It is widely believed that the thermal isolation effects caused by the opening of the Drake Passage played an important role in the abrupt cooling that occurred at the Eocene-Oligocene boundary in the Cenozoic. These effects are also thought to be independent of the geometry of the passage. Here, the authors demonstrate that the climate impacts of the Drake Passage depend on the passage geometry by comparing the climate's sensitivity to the opening of the Drake Passage under the present and the Early Eocene land-sea configurations. These experiments show that the thermal isolation effects caused by the passage are much stronger under the present land-sea configuration. In comparison, under the Early Eocene land-sea configuration, the weak anomalies in heat transport caused by the opening of the narrow and shallow Drake Passage are not strong enough to thermally insulate Antarctica. The climate effects of the Drake Passage on the Cenozoic cooling have been overestimated in previous sensitivity studies carried out using the present land-sea configuration. Thus, it is unlikely that the opening of the Drake Passage played an essential role in the abrupt Cenozoic cooling, especially in the abrupt cooling at the Eocene-Oligocene boundary.
基金supported by the Global Change Research Program of Ministry of Science and Technology of China(Grant No.2010CB950200)National Natural Science Foundation of China(Grant No.40930103)
文摘Climate in Eastern Asia is composed of monsoon climate in the east,arid and semi-arid climate in the north and west,and the cold and dry climate of Qinghai-Tibetan Plateau in the southwest.The underlying causes for the evolution of East Asian climate during late Cenozoic have long been investigated and debated,particularly with regards to the role played by the Qinghai-Tibetan Plateau uplift and the global cooling.In this paper,we reviewed major research developments in this area,and summarized the important results.Based on a synthesis of data,we propose that the Qinghai-Tibetan Plateau uplift alone cannot fully explain the formation of monsoon and arid climates in Eastern Asia during the past 22–25 Ma.Other factors such as the global ice volume and high-latitude temperature changes have also played a vital role.Moreover,atmospheric CO2changes may have modulated the monsoon and dry climate changes by affecting the location of the inter-tropical convergence zone(ITCZ),which controls the monsoon precipitation zone and the track of the East Asian winter monsoon during late Cenozoic.The integration of high-resolution geological record and numerical paleoclimate modeling could make new contributions to understanding the climate evolution and variation in eastern Asia in future studies.It could facilitate the investigation of the regional differences in East Asian environmental changes and the asynchronous nature between the uplift of Qinghai-Tibetan Plateau and their climatic effects.These would be the keys to understanding underlying driving forces for the evolution of the East Asian climate.