In this paper,we firstly analyze the "3,400 travel time table "used for a long time in Xinjiang Seismological Network to obtain the velocity structure models in accord with the table by fitting. Then we fit ...In this paper,we firstly analyze the "3,400 travel time table "used for a long time in Xinjiang Seismological Network to obtain the velocity structure models in accord with the table by fitting. Then we fit the velocity of all seismic phases recorded in Xinjiang region in January 2009 ~ December 2013. Simulation analysis is done on the reliability and stability of the velocities,and a concept is proposed for building subarea crustal velocity models according to partitioning of seismic cluster regions. The crustal velocity model suitable for the Yutian area is fitted with the data of all phases of seismic events within a radius of 1°around the 2014 Yutian M_S7.3 earthquake since January 2009,and the model is applied to the relocation of the Yutian M_S7.3 earthquake and determination of focal depths of the earthquake sequence.展开更多
We successfully employ an automatic centroid moment tensor(CMT) inversion system to infer the CMT solutions of the February 12,2014 MS7.3 Yutian,Xinjiang earthquake using near-field seismic waveforms(4° < △ &...We successfully employ an automatic centroid moment tensor(CMT) inversion system to infer the CMT solutions of the February 12,2014 MS7.3 Yutian,Xinjiang earthquake using near-field seismic waveforms(4° < △ < 12°) observed by the virtual China seismic networks,which have been recently set up.The results indicate that this event occurred on a rupture plane(strike 243°,dip 70°,and rake-18°),showing left-lateral strike-slip faulting with a minor normal-faulting component.The centroid in the horizontal direction is located nearly 13 km east of the epicenter(36.123° N,82.499° E),and the best-fitting centroid depth is around 10 km.The total scalar moment,M0,is retrieved with an average value of 3.05 × 1019N·m,corresponding to moment magnitude MW6.92.Most of the energy is released within about 14 s.Moreover,we discuss about the potential application of this system in earthquake disaster decision.展开更多
Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using t...Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using the multi-station method in Tianshan,Xinjiang.This paper analyzes the variation of the wave velocity ratio disturbance value to highlight the abnormal,and also back-traces 7 moderate earthquakes at the research area.The results show that:(1)the background value of the wave velocity ratio is almost 1.70,the wave velocity ratio obviously decreases in the middle-eastern part of Tianshan and the region near the Puchang fault;(2)the wave velocity ratio disturbance value is mostly low in the epicenter before four earthquakes of M≥5.0 from 2011 to 2013 in the study area;(3)before 7 moderate strong earthquakes,the earthquake events with low value of the wave velocity ratio account for over 60% of corresponding total events near the epicenters,and the low value of the wave velocity ratio is relatively obvious before moderate earthquakes.展开更多
The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Di...The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response, propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms, on the basis of the Brune model, the source parameters of the 102 M, ≥ 3. 0 Yutian earthquake sequence, seismic moment, apparent stress and corner frequency. The results show that, seismic moment of the earthquake sequence is between 3. 46 × 10^11 -2. 08×10^15N.m, apparent stress is between 1.48 × 10^5 -1.16 ×10^6Pa, mean stress level is 0. 31MPa, and corner frequency is between 1.4-7. 1Hz in the range of 3. 0 -5. 0. By analyzing the apparent stress and corner frequency variation with time, we obtain that apparent stress of earthquakes before the Yutian Ms7. 3 earthquake was significantly higher than the aftershock sequence, but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress, and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress, after the Ms7. 3 earthquake, the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.展开更多
The seismic waveform of the Yutian Ms7. 3 earthquake, Xinjiang on February 12, 2014 was recorded clearly and completely by the Digital Seismic Networks of Xinjiang, Qinghai, Tibet, and Xinjiang Hotan array, so the met...The seismic waveform of the Yutian Ms7. 3 earthquake, Xinjiang on February 12, 2014 was recorded clearly and completely by the Digital Seismic Networks of Xinjiang, Qinghai, Tibet, and Xinjiang Hotan array, so the method of joint location by regional seismic network and seismic array can be used to accurately determine the earthquake source location. The following technologies were used in the process of location: ( 1 ) We selected seismic stations equally located around the epicenter of the Ms 7. 3 earthquake with an average interval of about 15 degrees in the initial location. (2) The recording waveforms of Yutian seismic station were rotated to the radial and tangential directions to precisely obtain the arrival time of S-waves to determine the epicentral distance. ( 3) The velocity model was used in the determination of location of the epicenter, based on the historical records of earthquakes in the area within a radius of 1.0 ° from the source as the center, and the velocity model is obtained after re-fitting and calibration. (4) Based on the waveform records of the Hotan seismic array, the method of waveform beaming was used to determine the azimuths and perform the correction of the epicenter location with these azimuths. (5) The deterministic method was used to measure the source depth. Finally, it is concluded that the Yutian Ms 7. 3 main shock hypocenter location is 36. 197°N, 82. 467°E, focal depth 12km and original time 17:19:48. 2 μm. February 12, 2014.展开更多
基金sponsored by the Special Fund of Department of Earthquake Monitoring and Prediction,CEA(1309010)Earthquake Science Foundation of Earthquake Administration of Xinjiang Uygur Autonomous Region(201207)+1 种基金the Special Training Project for Key Young Personnel of Seismic Monitoring Network of China(20130201)the Spark Program of Earthquake Science and Technology of China in 2014(XH13007)
文摘In this paper,we firstly analyze the "3,400 travel time table "used for a long time in Xinjiang Seismological Network to obtain the velocity structure models in accord with the table by fitting. Then we fit the velocity of all seismic phases recorded in Xinjiang region in January 2009 ~ December 2013. Simulation analysis is done on the reliability and stability of the velocities,and a concept is proposed for building subarea crustal velocity models according to partitioning of seismic cluster regions. The crustal velocity model suitable for the Yutian area is fitted with the data of all phases of seismic events within a radius of 1°around the 2014 Yutian M_S7.3 earthquake since January 2009,and the model is applied to the relocation of the Yutian M_S7.3 earthquake and determination of focal depths of the earthquake sequence.
基金funded by Special Oceanic Scientific Research Program(201405026)Science for Earthquake Resilience Program(XH12060Y)Special Seismological Industry Research Program(201208003)
文摘We successfully employ an automatic centroid moment tensor(CMT) inversion system to infer the CMT solutions of the February 12,2014 MS7.3 Yutian,Xinjiang earthquake using near-field seismic waveforms(4° < △ < 12°) observed by the virtual China seismic networks,which have been recently set up.The results indicate that this event occurred on a rupture plane(strike 243°,dip 70°,and rake-18°),showing left-lateral strike-slip faulting with a minor normal-faulting component.The centroid in the horizontal direction is located nearly 13 km east of the epicenter(36.123° N,82.499° E),and the best-fitting centroid depth is around 10 km.The total scalar moment,M0,is retrieved with an average value of 3.05 × 1019N·m,corresponding to moment magnitude MW6.92.Most of the energy is released within about 14 s.Moreover,we discuss about the potential application of this system in earthquake disaster decision.
基金funded by the Earthquake Science Fund of Xinjiang (201404)Seismic Tracing Oriented Task of China Earthquake Administration(2015010122)
文摘Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using the multi-station method in Tianshan,Xinjiang.This paper analyzes the variation of the wave velocity ratio disturbance value to highlight the abnormal,and also back-traces 7 moderate earthquakes at the research area.The results show that:(1)the background value of the wave velocity ratio is almost 1.70,the wave velocity ratio obviously decreases in the middle-eastern part of Tianshan and the region near the Puchang fault;(2)the wave velocity ratio disturbance value is mostly low in the epicenter before four earthquakes of M≥5.0 from 2011 to 2013 in the study area;(3)before 7 moderate strong earthquakes,the earthquake events with low value of the wave velocity ratio account for over 60% of corresponding total events near the epicenters,and the low value of the wave velocity ratio is relatively obvious before moderate earthquakes.
基金jointly sponsored by the National Key Technology R&D Program of China(2012BAK19B04-01-05)the Youth Earthquake Situation Tracking Program of China Earthquake Administration(2015010106)
文摘The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response, propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms, on the basis of the Brune model, the source parameters of the 102 M, ≥ 3. 0 Yutian earthquake sequence, seismic moment, apparent stress and corner frequency. The results show that, seismic moment of the earthquake sequence is between 3. 46 × 10^11 -2. 08×10^15N.m, apparent stress is between 1.48 × 10^5 -1.16 ×10^6Pa, mean stress level is 0. 31MPa, and corner frequency is between 1.4-7. 1Hz in the range of 3. 0 -5. 0. By analyzing the apparent stress and corner frequency variation with time, we obtain that apparent stress of earthquakes before the Yutian Ms7. 3 earthquake was significantly higher than the aftershock sequence, but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress, and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress, after the Ms7. 3 earthquake, the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.
基金funded by the Special Project of the Department of Earthquake Monitoring and Prediction,China Earthquake Administration(1309010)Seismic Network Youth Special Project,China Earthquake Administration(20140330,20130201)
文摘The seismic waveform of the Yutian Ms7. 3 earthquake, Xinjiang on February 12, 2014 was recorded clearly and completely by the Digital Seismic Networks of Xinjiang, Qinghai, Tibet, and Xinjiang Hotan array, so the method of joint location by regional seismic network and seismic array can be used to accurately determine the earthquake source location. The following technologies were used in the process of location: ( 1 ) We selected seismic stations equally located around the epicenter of the Ms 7. 3 earthquake with an average interval of about 15 degrees in the initial location. (2) The recording waveforms of Yutian seismic station were rotated to the radial and tangential directions to precisely obtain the arrival time of S-waves to determine the epicentral distance. ( 3) The velocity model was used in the determination of location of the epicenter, based on the historical records of earthquakes in the area within a radius of 1.0 ° from the source as the center, and the velocity model is obtained after re-fitting and calibration. (4) Based on the waveform records of the Hotan seismic array, the method of waveform beaming was used to determine the azimuths and perform the correction of the epicenter location with these azimuths. (5) The deterministic method was used to measure the source depth. Finally, it is concluded that the Yutian Ms 7. 3 main shock hypocenter location is 36. 197°N, 82. 467°E, focal depth 12km and original time 17:19:48. 2 μm. February 12, 2014.