期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进K-means聚类算法在电力客户价值分群的应用
被引量:
12
1
作者
朱州
吴漾
《计算机与数字工程》
2017年第6期1049-1054,1149,共7页
针对电力客户特点实行不同的营销策略和提供差异化服务,就需要对电力客户做出准确的分群。传统K-means聚类算法对数据分布均匀的类似球形的数据集聚类效果比较好,一旦数据集分布密度不均衡,类簇大小差异明显时,传统K-means算法容易使稀...
针对电力客户特点实行不同的营销策略和提供差异化服务,就需要对电力客户做出准确的分群。传统K-means聚类算法对数据分布均匀的类似球形的数据集聚类效果比较好,一旦数据集分布密度不均衡,类簇大小差异明显时,传统K-means算法容易使稀疏的大类簇被高密度小类簇瓜分,导致电力客户分群正确率下降。论文基于电力客户数据分布不均衡的特点,采用了一种改进的K-means聚类算法。改进的K-means算法提出一个新的加权聚类准则,并根据该准则修改了聚类迭代过程。文章最后在对电力客户数据的分群聚类结果表明,改进的K-means聚类算法的分群聚类效果中各个群类的紧凑性得到有效提高,误分情况明显改善。
展开更多
关键词
K-MEANS算法
新聚类准则
迭代权重
正确率
标准差
下载PDF
职称材料
题名
基于改进K-means聚类算法在电力客户价值分群的应用
被引量:
12
1
作者
朱州
吴漾
机构
贵州电网有限责任公司信息中心
出处
《计算机与数字工程》
2017年第6期1049-1054,1149,共7页
文摘
针对电力客户特点实行不同的营销策略和提供差异化服务,就需要对电力客户做出准确的分群。传统K-means聚类算法对数据分布均匀的类似球形的数据集聚类效果比较好,一旦数据集分布密度不均衡,类簇大小差异明显时,传统K-means算法容易使稀疏的大类簇被高密度小类簇瓜分,导致电力客户分群正确率下降。论文基于电力客户数据分布不均衡的特点,采用了一种改进的K-means聚类算法。改进的K-means算法提出一个新的加权聚类准则,并根据该准则修改了聚类迭代过程。文章最后在对电力客户数据的分群聚类结果表明,改进的K-means聚类算法的分群聚类效果中各个群类的紧凑性得到有效提高,误分情况明显改善。
关键词
K-MEANS算法
新聚类准则
迭代权重
正确率
标准差
Keywords
K-means algorithm,new clustering criterion,iterative weight,correct rate,standard deviation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进K-means聚类算法在电力客户价值分群的应用
朱州
吴漾
《计算机与数字工程》
2017
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部