期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
文字元素与包装设计的新视线
1
作者 魏振华 《商场现代化》 北大核心 2008年第35期204-204,共1页
优良的包装设计是企业进行品牌营销的利器,是商家赢得顾客信任的策略之一。许多国际包装设计大师对文字都有精深的研究,通晓文字的应用,使创意极具个性特征和浓郁的文化艺术气息及显著的商业功效。中国汉字被公认是表形、表意文字的典... 优良的包装设计是企业进行品牌营销的利器,是商家赢得顾客信任的策略之一。许多国际包装设计大师对文字都有精深的研究,通晓文字的应用,使创意极具个性特征和浓郁的文化艺术气息及显著的商业功效。中国汉字被公认是表形、表意文字的典范。它经历了漫长的演变过程,具有鲜明的民族性、和时代特征,已经形成了书法,美术,印刷三大体系。并且,这些丰富的文字资源还可以继续创新设计,促进经济发展具有深远的意义。 展开更多
关键词 文字元素 字体文化 包装设计 新视线
下载PDF
体验数字生活魅力 紫光媒体新视线二代全接触
2
《计算机与网络》 2004年第8期12-12,共1页
关键词 家用电脑 多媒体应用 紫光电脑公司 媒体新视线Ⅱ代 软件介绍 功能
下载PDF
清华紫光新视线6000
3
作者 王丁 《个人电脑》 2004年第1期21-21,共1页
关键词 笔记本电脑 芯片组 内存 主板 显卡 清华紫光通讯科技有限公司 新视线6000
下载PDF
PC战团新成员——紫光“新视线”家用电脑
4
作者 魔之大头 《大众软件》 2004年第1期26-27,共2页
说到清华紫光的硬件产品,大家都会想起它的扫描仪等外设和笔记本电脑。最近,清华紫光宣布进入已被众多厂商搅动得热火朝天的家用台式机市场,并推出了“新视线”系列家用电脑和“文诚”系列商用机,作为一家新加入的PC厂商,针对目前P... 说到清华紫光的硬件产品,大家都会想起它的扫描仪等外设和笔记本电脑。最近,清华紫光宣布进入已被众多厂商搅动得热火朝天的家用台式机市场,并推出了“新视线”系列家用电脑和“文诚”系列商用机,作为一家新加入的PC厂商,针对目前PC市场用户使用和需求情况的多样性,紫光“新视线” 展开更多
关键词 家用台式机 清华紫光公司 家用电脑 新视线”系列 “文诚”系列
原文传递
让你的客厅变成家庭娱乐中心——清华紫光无线飞联家用媒体中心电脑闪亮登场
5
《计算机与网络》 2004年第12期10-10,共1页
关键词 清华紫光公司 无线飞联家用媒体中心电脑 新视线S系列” 家庭无线媒体娱乐中心 双模式功能 硬件配置
下载PDF
傲视群雄 梦幻级高端个人全能电脑
6
《电脑时空》 2005年第9期38-38,共1页
作为紫光电脑2005产品“七剑”中最强的一剑,新视线6320定位在梦幻级的高端个人电脑.面向对配置要求极高的电脑发烧友们以及讲究生活品质的中高收入家庭。
关键词 新视线6320 个人电脑 处理器 二级缓存 显卡 EIST技术
原文传递
奇网异站网海拾贝
7
作者 Onion 《电脑时空》 2002年第11期100-101,共2页
关键词 网站 “TVB新视线 “视觉中国网站” “科幻网”
原文传递
Two-level hierarchical feature learning for image classification 被引量:3
8
作者 Guang-hui SONG Xiao-gang JIN +1 位作者 Gen-lang CHEN Yan NIE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第9期897-906,共10页
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific... In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods. 展开更多
关键词 Transfer learning Feature learning Deep convolutional neural network Hierarchical classification Spectral clustering
原文传递
Semantic image segmentation with fused CNN features 被引量:2
9
作者 耿慧强 张桦 +3 位作者 薛彦兵 周冕 徐光平 高赞 《Optoelectronics Letters》 EI 2017年第5期381-385,共5页
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neur... Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network(CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field(CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively. 展开更多
关键词 Neural networks PIXELS Random processes SEMANTICS
原文传递
A network-aware error-resilient method using prioritized intra refresh for wireless video communications 被引量:2
10
作者 Han-jie MA Fan ZHOU Rong-xin JIANG Yao-wu CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第8期1169-1176,共8页
We propose a novel prioritized intra refresh method for the wireless video communication.The proposed method considers the characteristics of the human visual system,the error-sensitivity of the bitstream,and the stat... We propose a novel prioritized intra refresh method for the wireless video communication.The proposed method considers the characteristics of the human visual system,the error-sensitivity of the bitstream,and the state of the time-varying wireless channel jointly.An expected perceptual distortion model was used to adjust the intra refresh rate adaptively.This model consists of the perceptual weight map based on an attention model,the bit error probability map based on bitstream size,and the dynamic channel state information(CSI).Experimental results indicate that,compared with other intra refresh methods that consider only the content of the video or the CSI,the proposed method improves the average peak signal-to-noise ratio(PSNR) of the whole frame by about 0.5 dB,and improves the average PSNR of the attention-area by about 0.8 dB. 展开更多
关键词 Intra refresh. Distortion. Perceotual weieht. Error-sensitivity. Channel state information (CSI)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部