目的探讨基于MRI高分辨率T2加权图像的影像组学主成分分析(PCA)法对直肠癌新辅助放射化学治疗效果的预测价值。方法回顾性分析2018年1月1日至2018年12月31日在我院因局部进展期直肠癌接受新辅助放射化学治疗后行直肠癌根治性切除术的80...目的探讨基于MRI高分辨率T2加权图像的影像组学主成分分析(PCA)法对直肠癌新辅助放射化学治疗效果的预测价值。方法回顾性分析2018年1月1日至2018年12月31日在我院因局部进展期直肠癌接受新辅助放射化学治疗后行直肠癌根治性切除术的80例患者资料,男60例、女20例,年龄为28~74岁,平均年龄为(56.2±9.9)岁。患者行新辅助放射化学治疗前接受3.0 T MRI检查,在高分辨率T2加权图像上提取影像组学特征,再采用PCA法进行特征值降维,使用降维后的特征与病理完全缓解(pCR)标签建立logistic回归分类器模型,将样本随机分为训练集与测试集进行机器学习,分别绘制ROC曲线并计算AUC及灵敏度、特异度、准确度。结果MRI高分辨率T2加权图像共提取到1409个影像组学特征,PCA法重新组合并选取了前5个最能代表整个影像组学特征矩阵的新特征,分别能代表整个影像组学特征矩阵中9.92601667×10^-1、4.85454500×10^-3、2.50901391×10^-3、2.48903230×10^-5、7.37298450×10^-6的信息。Logistic回归分类器模型交叉验证测试集的平均AUC为0.761(95%CI:0.694~0.828),灵敏度为90.3%,特异度为40.0%,准确度为79.0%。结论基于MRI高分辨率T2加权影像组学PCA法对直肠癌新辅助放射化学治疗的疗效具有较好的预测价值。展开更多
文摘目的探讨基于MRI高分辨率T2加权图像的影像组学主成分分析(PCA)法对直肠癌新辅助放射化学治疗效果的预测价值。方法回顾性分析2018年1月1日至2018年12月31日在我院因局部进展期直肠癌接受新辅助放射化学治疗后行直肠癌根治性切除术的80例患者资料,男60例、女20例,年龄为28~74岁,平均年龄为(56.2±9.9)岁。患者行新辅助放射化学治疗前接受3.0 T MRI检查,在高分辨率T2加权图像上提取影像组学特征,再采用PCA法进行特征值降维,使用降维后的特征与病理完全缓解(pCR)标签建立logistic回归分类器模型,将样本随机分为训练集与测试集进行机器学习,分别绘制ROC曲线并计算AUC及灵敏度、特异度、准确度。结果MRI高分辨率T2加权图像共提取到1409个影像组学特征,PCA法重新组合并选取了前5个最能代表整个影像组学特征矩阵的新特征,分别能代表整个影像组学特征矩阵中9.92601667×10^-1、4.85454500×10^-3、2.50901391×10^-3、2.48903230×10^-5、7.37298450×10^-6的信息。Logistic回归分类器模型交叉验证测试集的平均AUC为0.761(95%CI:0.694~0.828),灵敏度为90.3%,特异度为40.0%,准确度为79.0%。结论基于MRI高分辨率T2加权影像组学PCA法对直肠癌新辅助放射化学治疗的疗效具有较好的预测价值。