期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Biterm主题模型的新闻线索生成方法
被引量:
4
1
作者
赵天资
段亮
+2 位作者
岳昆
乔少杰
马子娟
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2021年第2期1-13,共13页
【目的】为解决生成新闻线索时抽取新闻主题及度量子事件相关性困难的问题,通过动态滑动窗口的方法改进主题模型,提高长文本和短文本新闻主题抽取的质量,并基于抽取出的新闻主题,提出面向新闻事件的新闻线索生成方法。【方法】在主题模...
【目的】为解决生成新闻线索时抽取新闻主题及度量子事件相关性困难的问题,通过动态滑动窗口的方法改进主题模型,提高长文本和短文本新闻主题抽取的质量,并基于抽取出的新闻主题,提出面向新闻事件的新闻线索生成方法。【方法】在主题模型IBTM(Incremental Biterm Topic Model)的基础上,通过动态滑动窗口减小二元词组的提取范围,提出既适合在长文本新闻也适合在短文本新闻上抽取主题的News-IBTM模型,进而基于该模型从新闻数据中抽取主题分布和主题-词分布、推断文档-主题分布,再利用JS散度来度量文档-主题分布的差异,从而生成新闻线索。【结果】在人民网新闻和微博新闻数据上的实验结果表明,无论是长文本新闻还是短文本新闻,News-IBTM在困惑度、准确率及效率上都优于现有的经典主题模型。【局限】News-IBTM以及其他新闻线索生成方法的准确率都不高,还可以进一步提升。【结论】本文方法适合应对长文本和短文本新闻主题抽取的质量问题,并能从新闻事件中获取新闻线索。
展开更多
关键词
新闻
事件
新闻线索生成
主题模型
JS散度
原文传递
题名
基于Biterm主题模型的新闻线索生成方法
被引量:
4
1
作者
赵天资
段亮
岳昆
乔少杰
马子娟
机构
云南大学信息学院
成都信息工程大学软件工程学院
成都信息工程大学软件自动生成与智能服务四川省重点实验室
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2021年第2期1-13,共13页
基金
国家自然科学基金云南联合基金重点支持项目(项目编号:U1802271)
云南省教育厅科学研究基金项目(项目编号:2020Y0010)
中国博士后科学基金项目(项目编号:2020M673310)的研究成果之一。
文摘
【目的】为解决生成新闻线索时抽取新闻主题及度量子事件相关性困难的问题,通过动态滑动窗口的方法改进主题模型,提高长文本和短文本新闻主题抽取的质量,并基于抽取出的新闻主题,提出面向新闻事件的新闻线索生成方法。【方法】在主题模型IBTM(Incremental Biterm Topic Model)的基础上,通过动态滑动窗口减小二元词组的提取范围,提出既适合在长文本新闻也适合在短文本新闻上抽取主题的News-IBTM模型,进而基于该模型从新闻数据中抽取主题分布和主题-词分布、推断文档-主题分布,再利用JS散度来度量文档-主题分布的差异,从而生成新闻线索。【结果】在人民网新闻和微博新闻数据上的实验结果表明,无论是长文本新闻还是短文本新闻,News-IBTM在困惑度、准确率及效率上都优于现有的经典主题模型。【局限】News-IBTM以及其他新闻线索生成方法的准确率都不高,还可以进一步提升。【结论】本文方法适合应对长文本和短文本新闻主题抽取的质量问题,并能从新闻事件中获取新闻线索。
关键词
新闻
事件
新闻线索生成
主题模型
JS散度
Keywords
News Events
News Clues Generation
Topic Model
Jensen-Shannon Divergence
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Biterm主题模型的新闻线索生成方法
赵天资
段亮
岳昆
乔少杰
马子娟
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2021
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部