In recent several years,some works have been done on cosmic thermodynamics.The apparent horizonwas regarded as the key characteristic supersurface where thermodynamics can be built on perfectly.However,if theirreversi...In recent several years,some works have been done on cosmic thermodynamics.The apparent horizonwas regarded as the key characteristic supersurface where thermodynamics can be built on perfectly.However,if theirreversible process is considered,the proper position for building thermodynamics will not be the apparent horizonanymore.The new position is related to dark energy state equation and the irreversible process parameters.展开更多
A new mathematical method is proposed to convert the oscillator instability parameters from Allan variance to Spectrum Density(SD)of random phase fluctuations,which is the inversion of the classic transformation formu...A new mathematical method is proposed to convert the oscillator instability parameters from Allan variance to Spectrum Density(SD)of random phase fluctuations,which is the inversion of the classic transformation formula from SD to Allan variance.Due to the fact that Allan variance does not always determine a unique SD function,power-law model of the SD of oscillator phase fluctuations is introduced to the translating algorithm and a constrained maximum likelihood solution is presented.Considering that the inversion is an ill-posed problem,a regularization method is brought forward in the process.Simulation results show that the converted SD of phase fluctuations from Allan variance parameters agrees well with the real SD function.Furthermore,the effects of the selected regularization factors and the input Allan variances are analyzed in detail.展开更多
According to the biased angles provided by the bistatic sensors, the necessary condition of observability and Cramer-Rao low bounds for the bistatic system are derived and analyzed, respectively. Additionally, a dual ...According to the biased angles provided by the bistatic sensors, the necessary condition of observability and Cramer-Rao low bounds for the bistatic system are derived and analyzed, respectively. Additionally, a dual Kalman filter method is presented with the purpose of eliminating the effect of biased angles on the state variable estimation. Finally, Monte-Carlo simulations are conducted in the observable scenario. Simulation results show that the proposed theory holds true, and the dual Kalman filter method can estimate state variable and biased angles simultaneously. Furthermore, the estimated results can achieve their Cramer-Rao tow bounds.展开更多
The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers...The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers: the Holocene, upper Pleistocene, middle Pleistocene, lower Pleistocene, upper Pliocene, middle Pliocene and Miocene aquifers. The water isotopic compositions (82H and 8180) were determined to elucidate the origin and the interaction between surface water and groundwater studies. Transit time (age) of the groundwater samples was determined to explain the direction of groundwater flow. The dating techniques included 3H and ^14C isotopes measurement, followed by a correction for the initial ^14C-activity by the ^13C-composition (^13C) in TDIC (Total Dissolved Inorganic Carbon). Geochemical parameters of the groundwater samples were measured either directly in the field or in the laboratory. The results showed that the groundwater from the Holocene and upper Pleistocene aquifers was most recharged from the local meteorological and hydrological systems, including local precipitation, fiver and reservoirs. Thus, it has short transit time and its stable isotopic composition is spread around the local meteoric waterline and lines for rivers or reservoirs water. The groundwater in the deeper aquifers: middle and lower Pleistocene, and Neogene aquifers has old age up to 22.5 ka BP. Its water seems to be recharged from the areas with an altitude from 600 to 700 m higher to the Neogene deposit layer altitude. The groundwater in the SE SP (South-Eastern Southern Plain) region has a high quality. The water type is Na-Ca-Mg-HCO3 with low content of chloride and TDS (Total Dissolved Solids). Calcite/dolomite and gypsum dissolution, organic matter decomposition and sequence of red-ox reactions proceeding through different electron acceptors sediment were controlled the chemistry of the groundwater in the study region.展开更多
Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-lay...Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.展开更多
Based on the long-wavelength approximation,a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the ...Based on the long-wavelength approximation,a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the relationship between fracture parameters and seismic response. Seismic scattering is an effective way to inverse anisotropic parameters. In this study,we propose a reliable method for predicting the Thomsen's weak anisotropic parameters and fracture weaknesses in an orthorhombic fractured reservoir using azimuthal pre-stack seismic data. First, considering the influence of fluid substitution in mineral matrix, porosity, fractures and anisotropic rocks, we estimate the orthorhombic anisotropic stiffness coefficients by constructing an equivalent rock physics model for fractured rocks. Further, we predict the logging elastic parameters, Thomsen's weak parameters, and fracture weaknesses to provide the initial model constraints for the seismic inversion. Then, we derive the P-wave reflection coefficient equation for the inversion of Thomsen's weak anisotropic parameters and fracture weaknesses.Cauchy-sparse and smoothing-model constraint regularization taken into account in a Bayesian framework, we finally develop a method of amplitude variation with angles of incidence and azimuth(AVAZ) inversion for Thomsen's weak anisotropic parameters and fracture weaknesses, and the model parameters are estimated by using the nonlinear iteratively reweighted least squares(IRLS) strategy. Both synthetic and real examples show that the method can directly estimate the orthorhombic characteristic parameters from the azimuthally pre-stack seismic data, which provides a reliable seismic inversion method for predicting Thomsen's weak anisotropic parameters and fracture weaknesses.展开更多
We solve a generalized nonautonomous nonlinear Schrodinger equation analytically by performing the Hirota's bilinearization method. The precise expression of a parameter e, which provides a compatibility condition an...We solve a generalized nonautonomous nonlinear Schrodinger equation analytically by performing the Hirota's bilinearization method. The precise expression of a parameter e, which provides a compatibility condition and dark soliton management, is obtained. Comparing with nonautonomous bright soliton, we find that the gain parameter affects both the background and the valley of dark soliton (∈2 ≠ 1) while it has no effects on the wave central position. Moreover, the precise expressions of a nonautonomous black soliton's (∈2 = 1) width, background and the trajectory of its wave central, which describe the dynamic behavior of soliton's evolution, are investigated analytically. Finally, the stability of the dark soliton solution is demonstrated numerically. It is shown that the main characteristic of the dark solitons keeps unchanged under a slight perturbation in the compatibility condition.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.10773002 and 10875012the National Basic Research Program of China under Grant No.2003CB716302
文摘In recent several years,some works have been done on cosmic thermodynamics.The apparent horizonwas regarded as the key characteristic supersurface where thermodynamics can be built on perfectly.However,if theirreversible process is considered,the proper position for building thermodynamics will not be the apparent horizonanymore.The new position is related to dark energy state equation and the irreversible process parameters.
文摘A new mathematical method is proposed to convert the oscillator instability parameters from Allan variance to Spectrum Density(SD)of random phase fluctuations,which is the inversion of the classic transformation formula from SD to Allan variance.Due to the fact that Allan variance does not always determine a unique SD function,power-law model of the SD of oscillator phase fluctuations is introduced to the translating algorithm and a constrained maximum likelihood solution is presented.Considering that the inversion is an ill-posed problem,a regularization method is brought forward in the process.Simulation results show that the converted SD of phase fluctuations from Allan variance parameters agrees well with the real SD function.Furthermore,the effects of the selected regularization factors and the input Allan variances are analyzed in detail.
基金the Natural Science Foundation of Jiangsu Province, China (BK2004132).
文摘According to the biased angles provided by the bistatic sensors, the necessary condition of observability and Cramer-Rao low bounds for the bistatic system are derived and analyzed, respectively. Additionally, a dual Kalman filter method is presented with the purpose of eliminating the effect of biased angles on the state variable estimation. Finally, Monte-Carlo simulations are conducted in the observable scenario. Simulation results show that the proposed theory holds true, and the dual Kalman filter method can estimate state variable and biased angles simultaneously. Furthermore, the estimated results can achieve their Cramer-Rao tow bounds.
文摘The origin and quality of groundwater in the Southeastern region (belongs to Southern Plain) were identified by using isotopic techniques and geochemical analysis. Groundwater samples were collected from 7 aquifers: the Holocene, upper Pleistocene, middle Pleistocene, lower Pleistocene, upper Pliocene, middle Pliocene and Miocene aquifers. The water isotopic compositions (82H and 8180) were determined to elucidate the origin and the interaction between surface water and groundwater studies. Transit time (age) of the groundwater samples was determined to explain the direction of groundwater flow. The dating techniques included 3H and ^14C isotopes measurement, followed by a correction for the initial ^14C-activity by the ^13C-composition (^13C) in TDIC (Total Dissolved Inorganic Carbon). Geochemical parameters of the groundwater samples were measured either directly in the field or in the laboratory. The results showed that the groundwater from the Holocene and upper Pleistocene aquifers was most recharged from the local meteorological and hydrological systems, including local precipitation, fiver and reservoirs. Thus, it has short transit time and its stable isotopic composition is spread around the local meteoric waterline and lines for rivers or reservoirs water. The groundwater in the deeper aquifers: middle and lower Pleistocene, and Neogene aquifers has old age up to 22.5 ka BP. Its water seems to be recharged from the areas with an altitude from 600 to 700 m higher to the Neogene deposit layer altitude. The groundwater in the SE SP (South-Eastern Southern Plain) region has a high quality. The water type is Na-Ca-Mg-HCO3 with low content of chloride and TDS (Total Dissolved Solids). Calcite/dolomite and gypsum dissolution, organic matter decomposition and sequence of red-ox reactions proceeding through different electron acceptors sediment were controlled the chemistry of the groundwater in the study region.
文摘Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.
文摘Based on the long-wavelength approximation,a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the relationship between fracture parameters and seismic response. Seismic scattering is an effective way to inverse anisotropic parameters. In this study,we propose a reliable method for predicting the Thomsen's weak anisotropic parameters and fracture weaknesses in an orthorhombic fractured reservoir using azimuthal pre-stack seismic data. First, considering the influence of fluid substitution in mineral matrix, porosity, fractures and anisotropic rocks, we estimate the orthorhombic anisotropic stiffness coefficients by constructing an equivalent rock physics model for fractured rocks. Further, we predict the logging elastic parameters, Thomsen's weak parameters, and fracture weaknesses to provide the initial model constraints for the seismic inversion. Then, we derive the P-wave reflection coefficient equation for the inversion of Thomsen's weak anisotropic parameters and fracture weaknesses.Cauchy-sparse and smoothing-model constraint regularization taken into account in a Bayesian framework, we finally develop a method of amplitude variation with angles of incidence and azimuth(AVAZ) inversion for Thomsen's weak anisotropic parameters and fracture weaknesses, and the model parameters are estimated by using the nonlinear iteratively reweighted least squares(IRLS) strategy. Both synthetic and real examples show that the method can directly estimate the orthorhombic characteristic parameters from the azimuthally pre-stack seismic data, which provides a reliable seismic inversion method for predicting Thomsen's weak anisotropic parameters and fracture weaknesses.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975180, 11047025, and 11075126 and the Applied nonlinear Science and Technology from the Most Important Among all the Top Priority Disciplines of Zhejiang Province
文摘We solve a generalized nonautonomous nonlinear Schrodinger equation analytically by performing the Hirota's bilinearization method. The precise expression of a parameter e, which provides a compatibility condition and dark soliton management, is obtained. Comparing with nonautonomous bright soliton, we find that the gain parameter affects both the background and the valley of dark soliton (∈2 ≠ 1) while it has no effects on the wave central position. Moreover, the precise expressions of a nonautonomous black soliton's (∈2 = 1) width, background and the trajectory of its wave central, which describe the dynamic behavior of soliton's evolution, are investigated analytically. Finally, the stability of the dark soliton solution is demonstrated numerically. It is shown that the main characteristic of the dark solitons keeps unchanged under a slight perturbation in the compatibility condition.