In Delay Tolerant Networks (DTNs), the offiine users can, through the encountering nodes, use the specific peer-to-peer message routing approach to deliver messages to the destination. Thus, it solves the problem th...In Delay Tolerant Networks (DTNs), the offiine users can, through the encountering nodes, use the specific peer-to-peer message routing approach to deliver messages to the destination. Thus, it solves the problem that users have the demands to deliver messages while they are temporarily not able to connect to the Internet. Therefore, by the characteristics of DTNs, people who are not online can still query some location based information, with the help of users using the same service in the nearby area. In this paper, we proposed a location-based content search approach. Based on the concept of three-tier area and hybrid node types, we presented four strategies to solve the query problem, namely, Data Replication, Query Replication, Data Reply, and Data Synchronization strategies. Especially we proposed a Message Queue Selection algorithm for message transferring. The priority concept is set associated with every message such that the most "important" one could be sent first. In this way, it can increase the query success ratio and reduce the query delay time. Finally, we evaluated our approach, and compared with other routing schemes. The simulation results showed that our proposed approach had better query efficiency and shorter delay.展开更多
文摘In Delay Tolerant Networks (DTNs), the offiine users can, through the encountering nodes, use the specific peer-to-peer message routing approach to deliver messages to the destination. Thus, it solves the problem that users have the demands to deliver messages while they are temporarily not able to connect to the Internet. Therefore, by the characteristics of DTNs, people who are not online can still query some location based information, with the help of users using the same service in the nearby area. In this paper, we proposed a location-based content search approach. Based on the concept of three-tier area and hybrid node types, we presented four strategies to solve the query problem, namely, Data Replication, Query Replication, Data Reply, and Data Synchronization strategies. Especially we proposed a Message Queue Selection algorithm for message transferring. The priority concept is set associated with every message such that the most "important" one could be sent first. In this way, it can increase the query success ratio and reduce the query delay time. Finally, we evaluated our approach, and compared with other routing schemes. The simulation results showed that our proposed approach had better query efficiency and shorter delay.