将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,...将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。展开更多
文摘将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。