提出一种基于无抽样方向滤波器组的图像去噪新方法,首先,将一维半带滤波器(half band filter)转换成二维低通滤波器,通过对此滤波器的各种操作获得4方向、8方向和16方向等无抽样方向滤波器组,同时,将各频域方向滤波器转换成空域模板;其...提出一种基于无抽样方向滤波器组的图像去噪新方法,首先,将一维半带滤波器(half band filter)转换成二维低通滤波器,通过对此滤波器的各种操作获得4方向、8方向和16方向等无抽样方向滤波器组,同时,将各频域方向滤波器转换成空域模板;其次,采用Contourlet变换中的多尺度分解方法,利用上述空域模板实现图像方向分解,获得噪声图像的各尺度多方向系数;最后,根据各方向系数的统计特性,合理设定去噪阈值,方向合成只需各方向子带图像相加,多尺度合成过程与Contourlet变换相同,完成图像去噪。实验结果表明:该方法不仅有效地去除了图像噪声,而且能很好地保留图像的边缘纹理信息,并很好地去除了Contourlet变换去噪中无法避免伪吉布斯现象所引起的视觉失真,与现有阈值去噪方法相比,图像信噪比明显提高。展开更多
文摘提出一种基于无抽样方向滤波器组的图像去噪新方法,首先,将一维半带滤波器(half band filter)转换成二维低通滤波器,通过对此滤波器的各种操作获得4方向、8方向和16方向等无抽样方向滤波器组,同时,将各频域方向滤波器转换成空域模板;其次,采用Contourlet变换中的多尺度分解方法,利用上述空域模板实现图像方向分解,获得噪声图像的各尺度多方向系数;最后,根据各方向系数的统计特性,合理设定去噪阈值,方向合成只需各方向子带图像相加,多尺度合成过程与Contourlet变换相同,完成图像去噪。实验结果表明:该方法不仅有效地去除了图像噪声,而且能很好地保留图像的边缘纹理信息,并很好地去除了Contourlet变换去噪中无法避免伪吉布斯现象所引起的视觉失真,与现有阈值去噪方法相比,图像信噪比明显提高。