Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in ...Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.展开更多
To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con...To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.展开更多
The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small u...The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small uncertainty in the measurement will came large deviation in reconstncted signals. The amplified noise has to be suppressed at the sacrifice of biasing in estimation. The paper presents a kind of designing method of inverse filter in frequency domain based on stabilized solutions of Fredholm integral equations of the fast kind in order to reduce dynamic errors. Compared with previous several work, the method has advantage of generalization. Simulations with different Signal-to-Noise ratio (SNR) are investigated. Flexibility of the method is verified. Application of correcting dynamic error is given.展开更多
The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT par...The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT parallel robot. The method need calculate many kinematics equations of parallel robot such as position back solution, velocity Jacobin, position forward solution and error Jacobin. New methods presented for solving these questions are simpler and fitter for programming and calculating, because former methods are too complex to use in engineering. These questions may be solved by iterative method of numerical value which has fast velocity of calculating. These new methods may be used in other mechanism of parallel robot too, and so have wider using value. The experimental results demonstrate that the system may satisfy entirely high technical request and fit for engineering in new measures.展开更多
基金National Natural Science Foundation of China(No.61201412)Ntural Science Foundation of Shanxi Province(No.2012021011-5)
文摘Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.
文摘To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.
基金The paper is sponsored by National Natural Science Foundation of China(No.50675211)Natural Science Foundation(No.2009011023)Returned Overseas Graduates Foundation(No.2008067) of Shanxi Provincein China
文摘The main cause of dynamic errors is due to frequency response limitation of measurement system. One way of solving this problem is designing an effective inverse filter. Since the problem is ill-conditioned, a small uncertainty in the measurement will came large deviation in reconstncted signals. The amplified noise has to be suppressed at the sacrifice of biasing in estimation. The paper presents a kind of designing method of inverse filter in frequency domain based on stabilized solutions of Fredholm integral equations of the fast kind in order to reduce dynamic errors. Compared with previous several work, the method has advantage of generalization. Simulations with different Signal-to-Noise ratio (SNR) are investigated. Flexibility of the method is verified. Application of correcting dynamic error is given.
文摘The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT parallel robot. The method need calculate many kinematics equations of parallel robot such as position back solution, velocity Jacobin, position forward solution and error Jacobin. New methods presented for solving these questions are simpler and fitter for programming and calculating, because former methods are too complex to use in engineering. These questions may be solved by iterative method of numerical value which has fast velocity of calculating. These new methods may be used in other mechanism of parallel robot too, and so have wider using value. The experimental results demonstrate that the system may satisfy entirely high technical request and fit for engineering in new measures.