In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation o...In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.展开更多
We developed a novel cement evaluation logging tool,named the azimuthally acoustic bond tool(AABT),which uses a phased-arc array transmitter with azimuthal detection capability.We combined numerical simulations and ...We developed a novel cement evaluation logging tool,named the azimuthally acoustic bond tool(AABT),which uses a phased-arc array transmitter with azimuthal detection capability.We combined numerical simulations and field tests to verify the AABT tool.The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing.With larger channeling size in the circumferential direction,the amplitude difference of the casing wave at different azimuths becomes more evident.The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing-cement interface,and can visualize the size,depth,and azimuth of channeling.In the case of good casingcement bonding,the AABT can further evaluate the cement bond quality at the cementformation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.展开更多
A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was ind...A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.展开更多
The traditional "dephase and sum" algorithms for over/under data combination estimate the ghost operator by assuming a calm sea surface. However, the real sea surface is typically rough, which invalidates the calm s...The traditional "dephase and sum" algorithms for over/under data combination estimate the ghost operator by assuming a calm sea surface. However, the real sea surface is typically rough, which invalidates the calm sea surface assumption. Hence, the traditional "dephase and sum" algorithms might produce poor-quality results in rough sea conditions. We propose an adaptive over/under data combination method, which adaptively estimates the amplitude spectrum of the ghost operator from the over/under data, and then over/under data combinations are implemented using the estimated ghost operators. A synthetic single shot gather is used to verify the performance of the proposed method in rough sea surface conditions and a real triple over/under dataset demonstrates the method performance.展开更多
The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equa...The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equation.The displacement expressions of the Scholte waves in liquid and solid were derived.Additionally,the mode of motion of Scholte waves in liquid and solid and their variation with depth was studied.The following results were obtained:The dispersion equation shows that the propagation velocity of the fundamental Scholte wave was greater than the P-wave in liquid and less than that of the Scholte wave in homogeneous elastic half-space.In contrast,the velocity of higher-order Scholte waves was greater than that of P waves in liquid and S-waves in solid.Only the fundamental Scholte wave has no cutoff frequency.The Scholte wave at the liquid surface moved only vertically,while the particles inside the liquid medium moved elliptically.The amplitude variation with depth in the solid medium caused the particle motion to change from a retrograde ellipse to a prograde ellipse.The above results imply the study of Scholte waves in the ocean and oceanic crust and help estimate ocean depths.展开更多
The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation ar...The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.展开更多
As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It...As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It can better improve the digital communication efficiency and reduce the Symbol error rate(SER) of the system than one-dimensional or two-dimensional modulation scheme.How to design a feasible constellation is the most concerned problem of PQAM currently.This paper first studies the relationship between the SER theoretical value of PQAM and the distribution of M and N,proposes a new M,N allocation scheme.Secondly,a new and straightforward design method of constructing higher-level 3-D signal constellations,which can be matched with the PQAM,and the constellation can divided into three different structures according to the ary for PQAM.Finally,the simulation results show that:in PQAM system,the modulation scheme and the constellation mapping scheme are proposed in this paper which can effectively reduce the system SER and improve the anti-noise performance of the system.展开更多
We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-s...We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.展开更多
Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors ...Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.展开更多
The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, w...The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.展开更多
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit...The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.展开更多
Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communicatio...Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.展开更多
The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit,...The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coetficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BECs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation frequency are also obtained.展开更多
基金sponsored by:the National Basic Research Program of China (973 Program) (2007CB209605)the National Natural Science Foundation of China (40974073)the National Hi-tech Research and Development Program of China (863 Program) (2009AA06Z206)
文摘In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing near- offset information in multiples, which are not displayed in the acquired seismic record. Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.
基金supported by the National Natural Science Foundation of China(Nos.11204380,11374371,61102102,and11134011)National Science and Technology Major Project(No.2011ZX05020-009)+1 种基金China National Petroleum Corporation(Nos.2014B-4011,2014D-4105,and 2014A-3912)PetroChina Innovation Foundation(No.2014D-5006-0307)
文摘We developed a novel cement evaluation logging tool,named the azimuthally acoustic bond tool(AABT),which uses a phased-arc array transmitter with azimuthal detection capability.We combined numerical simulations and field tests to verify the AABT tool.The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing.With larger channeling size in the circumferential direction,the amplitude difference of the casing wave at different azimuths becomes more evident.The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing-cement interface,and can visualize the size,depth,and azimuth of channeling.In the case of good casingcement bonding,the AABT can further evaluate the cement bond quality at the cementformation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.
基金Project(2014CB644002)supported by the National Basic Research and Development Project of ChinaProject(2015CX004)supported by the Innovation-driven Plan in Central South University,China
文摘A new high throughput heat-treatment method with a continuous temperature gradient between 600 and 700 ?C was utilized on the Ti-5553 alloy(Ti-5 Al-5 Mo-5 V-3 Cr, mass fraction, %). The temperature gradient was induced by the variation of the axial section of sample, which was heated by the direct current. The variation of continuous cooling rates on the treated sample was realized by using the end quenching method. The microstructural evolution and mechanical properties under different heat treatment conditions were evaluated. The results show that the pseudo-spinodal decomposition of the alloy occurs at(617±1) ?C, and the size of the precipitated α phase is around 300 nm. Moreover, the highest microhardness is obtained after the heat treatment at the pseudo-spinodal decomposition temperature for 4 h. These indicate that the high throughput method is efficient and fast to determine the phase transformation temperature and corresponding microstructural evolution of alloys.
文摘The traditional "dephase and sum" algorithms for over/under data combination estimate the ghost operator by assuming a calm sea surface. However, the real sea surface is typically rough, which invalidates the calm sea surface assumption. Hence, the traditional "dephase and sum" algorithms might produce poor-quality results in rough sea conditions. We propose an adaptive over/under data combination method, which adaptively estimates the amplitude spectrum of the ghost operator from the over/under data, and then over/under data combinations are implemented using the estimated ghost operators. A synthetic single shot gather is used to verify the performance of the proposed method in rough sea surface conditions and a real triple over/under dataset demonstrates the method performance.
基金supported by the National Natural Science Fondation of China(Nos.42174074,41674055,41704053)the Earthquake Science Spark Program of Hebei Province(No.DZ20200827053)+1 种基金Fundamental Research Funds for the Central Universities(No.ZY20215117)the Hebei Key Laboratory of Earthquake Dynamics(No.FZ212105).
文摘The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equation.The displacement expressions of the Scholte waves in liquid and solid were derived.Additionally,the mode of motion of Scholte waves in liquid and solid and their variation with depth was studied.The following results were obtained:The dispersion equation shows that the propagation velocity of the fundamental Scholte wave was greater than the P-wave in liquid and less than that of the Scholte wave in homogeneous elastic half-space.In contrast,the velocity of higher-order Scholte waves was greater than that of P waves in liquid and S-waves in solid.Only the fundamental Scholte wave has no cutoff frequency.The Scholte wave at the liquid surface moved only vertically,while the particles inside the liquid medium moved elliptically.The amplitude variation with depth in the solid medium caused the particle motion to change from a retrograde ellipse to a prograde ellipse.The above results imply the study of Scholte waves in the ocean and oceanic crust and help estimate ocean depths.
基金Supported by National Natural Science Foundation of China (No10872141)Doctoral Foundation of Ministry of Education of China (No20060056005)Natural Science Foundation of Tianjin University of Science and Technology (No20070210)
文摘The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.
基金supported in part by the National Natural Science Foundation of China (61561039, 61271177, and 61461044)
文摘As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It can better improve the digital communication efficiency and reduce the Symbol error rate(SER) of the system than one-dimensional or two-dimensional modulation scheme.How to design a feasible constellation is the most concerned problem of PQAM currently.This paper first studies the relationship between the SER theoretical value of PQAM and the distribution of M and N,proposes a new M,N allocation scheme.Secondly,a new and straightforward design method of constructing higher-level 3-D signal constellations,which can be matched with the PQAM,and the constellation can divided into three different structures according to the ary for PQAM.Finally,the simulation results show that:in PQAM system,the modulation scheme and the constellation mapping scheme are proposed in this paper which can effectively reduce the system SER and improve the anti-noise performance of the system.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.
文摘Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.
基金Project(2013CB228600)supported by the National Basic Research Program of China
文摘The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.
基金Project(50905037) supported by the National Natural Science Foundation of ChinaProject(20092304120014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+2 种基金 Project(20100471021) supported by the China Postdoctoral Science Foundation Project(LBH-Q09134) supported by Heilongjiang Postdoctoral Science-Research Foundation,China Project (HEUFT09013) supported by the Foundation of Harbin Engineering University,China
文摘The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.
基金supported by the MOST Program of International S&T Cooperation(Grant No.2016YFE0123200)National Natural Science Foundation of China(Grant No.61471100/61101090/61571082)+1 种基金Science and Technology on Electronic Information Control Laboratory(Grant No.6142105040103)Fundamental Research Funds for the Central Universities(Grant No.ZYGX2015J012/ZYGX2014Z005)
文摘Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10774120 and 10975114the Natural Science Foundation of Gansu Province under Grant No.1010RJZA012Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-48
文摘The dynamics of the weak non//near matter sofitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coetficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BECs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation frequency are also obtained.