In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas ina funnel external potential.We obtain one-dimensional nonlinear equation which describes the dynamics of transverse...In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas ina funnel external potential.We obtain one-dimensional nonlinear equation which describes the dynamics of transversetight confined bosonic gas from three-dimension to one-dimension,and find one-dimensional s-wave scattering lengthwhich depends on the shape of transverse confining potential.If the funnel trapping potential is strong enough at zerotemperature,all transverse excitations are frozen.We find the dynamic equation which describes the Tonks-Girardeaugas and present a qualitative analysis of the experimental accessibility of the Tonks-Girardeau gas with funnel-trappedalkalic atoms.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10647144Natural Science Foundation under Grant GK0513102Doctoral Special Fund of Yangzhou University
文摘In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas ina funnel external potential.We obtain one-dimensional nonlinear equation which describes the dynamics of transversetight confined bosonic gas from three-dimension to one-dimension,and find one-dimensional s-wave scattering lengthwhich depends on the shape of transverse confining potential.If the funnel trapping potential is strong enough at zerotemperature,all transverse excitations are frozen.We find the dynamic equation which describes the Tonks-Girardeaugas and present a qualitative analysis of the experimental accessibility of the Tonks-Girardeau gas with funnel-trappedalkalic atoms.