A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air dam...A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air damping of the plate. The end effect of the airflow in the slots is also treated by substituting an effective channel length for the geometric channel length (i. e. the thickness of the plate)..The damping pressure distribution, damping force, and damping force coefficient of the slotted plates can be found by solving the equation under appropriate boundary conditions. With restrictions on the thickness and the lateral dimensions of the slotted plate removed,the equation provides a useful tool for analysing the squeeze-film air damping effect of slotted plates with finite thickness and finite lateral dimensions. For a typical slotted plate structure, the damping force coefficient obtained by this equation agrees well with that generated by ANSYS.展开更多
An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,...An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.展开更多
Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions...Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions of millions of particles with complex interactions with liquid and the rotating impeller. The simulations were satisfactorily validated with experimental data in literature in terms of measured particle velocities in the tank.Influences of operating conditions and physical properties of particles(i.e., particle diameter and density) on the two-phase flow field in the stirred tank involving particle distribution, particle velocity and vortex were studied.The wide distribution of particle angular velocity ranging from 0 to 105r·min 1is revealed. The Magnus force is comparable to the drag force during the particle movement in the tank. The strong particle rotation will generate extra shear force on the particles so that the particle morphology may be affected, especially in the bio-/polymer-product related processes. It can be concluded that the CFD-DEM coupled approach provides a theoretical way to understand the physics of particle movement in micro- to macro-scales in the solid suspension of a stirred tank.展开更多
A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep ha...A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed.展开更多
This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows...This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.展开更多
The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucke...The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.展开更多
This paper focuses on a new rectangular waveguide grating Slow-Wave Structure (SWS) with cosine-shaped grooves and studies the propagation characteristics of the wave in the SWS. By using the approximate field-matchin...This paper focuses on a new rectangular waveguide grating Slow-Wave Structure (SWS) with cosine-shaped grooves and studies the propagation characteristics of the wave in the SWS. By using the approximate field-matching conditions,the dispersion equation and the coupling impedance of this circuit are obtained. The dispersion curves and coupling impedances of the fundamental wave are calculated and the influences of the various geometrical dimensions are discussed. The results show that the bandwidth of the cosine-shaped groove SWS is much wider than that of rectangular-shaped groove one. And reducing the groove width can broaden the frequency-band and decrease the phase-velocity,while increment of the groove-depth can also decrease phase-velocity. For above cases,the coupling impedance is more than 16Ω. The present analysis will be helpful on further study and design of the RF systems used in millimeter wave Traveling Wave Tube (TWT).展开更多
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p...To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.展开更多
This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e.g., in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid...This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e.g., in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc., are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results.展开更多
Experimental and numerical researches were conducted to investigate the cooling performance of a single row of consoles (converging slot-hole) on a large-scale flat-plate model. The results show that the coolant flo...Experimental and numerical researches were conducted to investigate the cooling performance of a single row of consoles (converging slot-hole) on a large-scale flat-plate model. The results show that the coolant flow from a row of consoles shows good lateral uniformity of adiabatic effectiveness, with regions of slightly enhanced cooling occurring between the consoles. For the console cooling geometry, the interaction between coolant jet from inclined console and the mainstream flow results in reasonable vortices configuration. A pair of counter rotating vortices originate from the edge of slot, not from the centerline of film holes and the rotating direction is contrary to conventional cylindrical hole. The heat transfer coefficient ratio is a tittle bigger for the console case than conventional cylindrical hole, and the discharge coefficient for a console is larger than that for cylindrical film cooling hole.展开更多
To enhance electric fields around nanorods,a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method.Since the superposition of the electric ...To enhance electric fields around nanorods,a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method.Since the superposition of the electric fields of the split multi-beam of light works as excitation for electron oscillations in the nanorods,enhanced electric fields occur around the nanorods.In addition,the effects of topological parameters of the nanorod-groove system,such as the oblique angle of the groove,displacement of the nanorod to the bottom of the groove,and separation between the nanorods on electric field distributions are also studied.These results may be helpful for designing substrates to obtain larger electric fields around nanorods.展开更多
文摘A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air damping of the plate. The end effect of the airflow in the slots is also treated by substituting an effective channel length for the geometric channel length (i. e. the thickness of the plate)..The damping pressure distribution, damping force, and damping force coefficient of the slotted plates can be found by solving the equation under appropriate boundary conditions. With restrictions on the thickness and the lateral dimensions of the slotted plate removed,the equation provides a useful tool for analysing the squeeze-film air damping effect of slotted plates with finite thickness and finite lateral dimensions. For a typical slotted plate structure, the damping force coefficient obtained by this equation agrees well with that generated by ANSYS.
文摘An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.
基金Supported by the State Key Development Program for Basic Research of China (2013CB733600), the National Natural Science Foundation of China (21036003, 20776074) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20090002110069).
文摘Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions of millions of particles with complex interactions with liquid and the rotating impeller. The simulations were satisfactorily validated with experimental data in literature in terms of measured particle velocities in the tank.Influences of operating conditions and physical properties of particles(i.e., particle diameter and density) on the two-phase flow field in the stirred tank involving particle distribution, particle velocity and vortex were studied.The wide distribution of particle angular velocity ranging from 0 to 105r·min 1is revealed. The Magnus force is comparable to the drag force during the particle movement in the tank. The strong particle rotation will generate extra shear force on the particles so that the particle morphology may be affected, especially in the bio-/polymer-product related processes. It can be concluded that the CFD-DEM coupled approach provides a theoretical way to understand the physics of particle movement in micro- to macro-scales in the solid suspension of a stirred tank.
基金supported by the National Natural Science Foundation of China (Nos. 52174099, 51904333)the Natural Science Foundation of Hunan Province, China (No. 2021JJ30842)
文摘A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed.
基金supported by theopen fund project of Scientific Alleviation of Disasters and Home Rebuilding(Grant No.DZJK-0814)from the Chinese State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology
文摘This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2012AA041801)supported by the National High Technology Research and Development Program of China+1 种基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2013CB035401)supported by the National Basic Research Program of China。
文摘The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.
文摘This paper focuses on a new rectangular waveguide grating Slow-Wave Structure (SWS) with cosine-shaped grooves and studies the propagation characteristics of the wave in the SWS. By using the approximate field-matching conditions,the dispersion equation and the coupling impedance of this circuit are obtained. The dispersion curves and coupling impedances of the fundamental wave are calculated and the influences of the various geometrical dimensions are discussed. The results show that the bandwidth of the cosine-shaped groove SWS is much wider than that of rectangular-shaped groove one. And reducing the groove width can broaden the frequency-band and decrease the phase-velocity,while increment of the groove-depth can also decrease phase-velocity. For above cases,the coupling impedance is more than 16Ω. The present analysis will be helpful on further study and design of the RF systems used in millimeter wave Traveling Wave Tube (TWT).
基金Projects(51104187,51274241,61321003) supported by the National Natural Science Foundation of ChinaProject(20100162120008) supported by Doctoral Fund of Ministry of Education of China
文摘To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.
文摘This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e.g., in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc., are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results.
基金supported by the National Natural Science Foundation of China (Grant No. 50876041)
文摘Experimental and numerical researches were conducted to investigate the cooling performance of a single row of consoles (converging slot-hole) on a large-scale flat-plate model. The results show that the coolant flow from a row of consoles shows good lateral uniformity of adiabatic effectiveness, with regions of slightly enhanced cooling occurring between the consoles. For the console cooling geometry, the interaction between coolant jet from inclined console and the mainstream flow results in reasonable vortices configuration. A pair of counter rotating vortices originate from the edge of slot, not from the centerline of film holes and the rotating direction is contrary to conventional cylindrical hole. The heat transfer coefficient ratio is a tittle bigger for the console case than conventional cylindrical hole, and the discharge coefficient for a console is larger than that for cylindrical film cooling hole.
基金supported by the National Natural Science Foundation of China (Grant No. 11004160)
文摘To enhance electric fields around nanorods,a Ag nanorod-groove system is presented and its electric field distribution is studied using the finite difference time domain method.Since the superposition of the electric fields of the split multi-beam of light works as excitation for electron oscillations in the nanorods,enhanced electric fields occur around the nanorods.In addition,the effects of topological parameters of the nanorod-groove system,such as the oblique angle of the groove,displacement of the nanorod to the bottom of the groove,and separation between the nanorods on electric field distributions are also studied.These results may be helpful for designing substrates to obtain larger electric fields around nanorods.