The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is deve...The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.展开更多
In the research, trees along 42 roads in Chongqing were explored and es- timated in terms of aesthetics, and aesthetic tendency and major influential factors of aesthetic value of street greenbelts in Chongqing arteri...In the research, trees along 42 roads in Chongqing were explored and es- timated in terms of aesthetics, and aesthetic tendency and major influential factors of aesthetic value of street greenbelts in Chongqing arterial roads were estimated with phychophysical method to establish SBE model of arterial road greenbelts land- scape.展开更多
The aim of this paper is to present the results of a long-term research project consisting in the elaboration of a new rational airfield pavement design procedure applied to flexible pavements. The described methodolo...The aim of this paper is to present the results of a long-term research project consisting in the elaboration of a new rational airfield pavement design procedure applied to flexible pavements. The described methodology is based on the principles and the feedback obtained from the highway pavement design process which has been applied for more than 30 years in France as well as in many other countries. Adaptations to airfield pavements have been made, including features such as accurate traffic description, consideration of lateral wander of aircrafts for instance. The results of these developments have led to a new methodology which enables optimizing pavement designs by considering various input parameters such as the type of pavement section (runway, taxiway or apron), the material properties and the temperature. The complete description of this method is available in the new pavement design manual and it is implemented in the dedicated software Aliz6-Airfield Pavement.展开更多
Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy ...Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.展开更多
The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and G...The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.展开更多
Case-based reasoning is an AI technique in which the previous solutions are stored for future use. People are used to guiding themselves according to those routes that are stored in their memories and have been used b...Case-based reasoning is an AI technique in which the previous solutions are stored for future use. People are used to guiding themselves according to those routes that are stored in their memories and have been used by them before. It is just based on people's preference to familiar routes, which are gained through the study of the cognitive activities. We propose to apply the intelligent method based on the case reasoning to path planning. It is impossible for a case base to store all the solutions to all the shortest paths; therefore, part of them should be stored. However, which routes should be stored and which should not be? How do we adapt the cases that have already been stored and how do we acquire the shortest route based on them? All these issues need to be explained by integrating knowledge of the network on account of case-based reasoning techniques. This paper suggests the case-based reasoning in another point. This means finding some irreplaceable links on the basis of the complete analysis of the problems space, which are called the must_be_passed link between the source and destination. Merely compute the shortest path case from those best exit/entry nodes of the grids to the irreplaceable links, and then add them into the case base storing for future use. This method is based on case-based reasoning technique and completely considers the properties of the problem space. In addition to the use of knowledge of the natural grid in the route network, this method is more efficient than existing algorithms on computing efficiency.展开更多
The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for pr...The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.展开更多
To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the ...To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the mixedcation perovskite FAxMA1-xPbI3(formamidinium/methylammonium lead iodide) promises high performance. However, the ratio of the mixed cations in the perovskite film has proved difficult to control with precursor solution. In addition, the FAxMA1-xPbI3 films contain a high percentage of MA+and suffer from serious phase separation and high trap states, resulting in inferior photovoltaic performance. In this study, to suppress phase separation, a post-processing method was developed to partially nucleate before annealing, by treating the as-prepared intermediate phase FAI-Pb I2-DMSO(DMSO: dimethylsulfoxide) with mixed FAI/MAI solution. It was found that in the final perovskite, FA0.92MA0.08 PbI3, defects were substantially reduced because the analogous molecular structure initiated ion exchange in the post-processed thin perovskite films, which advanced partial nucleation. As a result, the increased light harvesting and reduced trap states contributed to the enhancement of open-circuit voltage and short-circuit current. The PSCs produced by the post-processing method presented reliable reproducibility, with a maximum power conversion efficiency of 20.80% and a degradation of ~30% for 80 days in standard atmospheric conditions.展开更多
文摘The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.
文摘In the research, trees along 42 roads in Chongqing were explored and es- timated in terms of aesthetics, and aesthetic tendency and major influential factors of aesthetic value of street greenbelts in Chongqing arterial roads were estimated with phychophysical method to establish SBE model of arterial road greenbelts land- scape.
文摘The aim of this paper is to present the results of a long-term research project consisting in the elaboration of a new rational airfield pavement design procedure applied to flexible pavements. The described methodology is based on the principles and the feedback obtained from the highway pavement design process which has been applied for more than 30 years in France as well as in many other countries. Adaptations to airfield pavements have been made, including features such as accurate traffic description, consideration of lateral wander of aircrafts for instance. The results of these developments have led to a new methodology which enables optimizing pavement designs by considering various input parameters such as the type of pavement section (runway, taxiway or apron), the material properties and the temperature. The complete description of this method is available in the new pavement design manual and it is implemented in the dedicated software Aliz6-Airfield Pavement.
基金Project supported by the Development Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.045115012)the Shanghai Leading Academic Discipline Project (Grant No.T0102)the Shanghai Fiber Optics Leading Lab (Grant No.SKLSF0200505)
文摘Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.
文摘The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.
基金Supported by the National 863 program of China (No. 2006AA12Z202)
文摘Case-based reasoning is an AI technique in which the previous solutions are stored for future use. People are used to guiding themselves according to those routes that are stored in their memories and have been used by them before. It is just based on people's preference to familiar routes, which are gained through the study of the cognitive activities. We propose to apply the intelligent method based on the case reasoning to path planning. It is impossible for a case base to store all the solutions to all the shortest paths; therefore, part of them should be stored. However, which routes should be stored and which should not be? How do we adapt the cases that have already been stored and how do we acquire the shortest route based on them? All these issues need to be explained by integrating knowledge of the network on account of case-based reasoning techniques. This paper suggests the case-based reasoning in another point. This means finding some irreplaceable links on the basis of the complete analysis of the problems space, which are called the must_be_passed link between the source and destination. Merely compute the shortest path case from those best exit/entry nodes of the grids to the irreplaceable links, and then add them into the case base storing for future use. This method is based on case-based reasoning technique and completely considers the properties of the problem space. In addition to the use of knowledge of the natural grid in the route network, this method is more efficient than existing algorithms on computing efficiency.
文摘The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.
基金support from the National Key Research and Development Program of China (2016YFA0202401)the 111 Project (B16016)+2 种基金the National Natural Science Foundation of China (51702096 and U1705256)the Fundamental Research Funds for the Central Universities (2018ZD07)Metatest Scan Pro Laser Scanning System
文摘To date, extensive research has been carried out,with considerable success, on the development of highperformance perovskite solar cells(PSCs). Owing to its wide absorption range and remarkable thermal stability, the mixedcation perovskite FAxMA1-xPbI3(formamidinium/methylammonium lead iodide) promises high performance. However, the ratio of the mixed cations in the perovskite film has proved difficult to control with precursor solution. In addition, the FAxMA1-xPbI3 films contain a high percentage of MA+and suffer from serious phase separation and high trap states, resulting in inferior photovoltaic performance. In this study, to suppress phase separation, a post-processing method was developed to partially nucleate before annealing, by treating the as-prepared intermediate phase FAI-Pb I2-DMSO(DMSO: dimethylsulfoxide) with mixed FAI/MAI solution. It was found that in the final perovskite, FA0.92MA0.08 PbI3, defects were substantially reduced because the analogous molecular structure initiated ion exchange in the post-processed thin perovskite films, which advanced partial nucleation. As a result, the increased light harvesting and reduced trap states contributed to the enhancement of open-circuit voltage and short-circuit current. The PSCs produced by the post-processing method presented reliable reproducibility, with a maximum power conversion efficiency of 20.80% and a degradation of ~30% for 80 days in standard atmospheric conditions.